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ABSTRACT

In Virtual Reality (VR), users typically interact with the virtual
world using virtual keyboard to insert keywords, surfing the web-
pages, or typing passwords to access online accounts. Hence, it
becomes imperative to understand the security of virtual keystrokes.
In this paper, we present VR-Spy, a virtual keystrokes recognition
method using channel state information (CSI) of WiFi signals. To
the best of our knowledge, this is the first work that uses WiFi
signals to recognize virtual keystrokes in VR headsets. The key
idea behind VR-Spy is that the side-channel information of fine-
granular hand movements associated with each virtual keystroke
has a unique gesture pattern in the CSI waveforms. Our novel
pattern extraction algorithm leverages signal processing techniques
to extract the patterns from the variations of CSI. We implement
VR-Spy using two Commercially Off-The-Shelf (COTS) devices,
a transmitter (WAVLINK router), and a receiver (Intel NUC with
an IWL 5300 NIC). Finally, VR-Spy achieves a virtual keystroke
recognition accuracy of 69.75% in comparison to techniques that
assume very advanced adversary models with vision and motion
sensors near the victim.

Index Terms: Human-centered computing—Gesture Computing—
Virtual Key-logging Attack—Channel State Information

1 INTRODUCTION

Virtual reality (VR) technology is experiencing rapid growth, es-
pecially in hardware and software technologies. Initially, VR was
mainly used for playing video games and watching 3D videos. The
evolution of VR technologies has emerged in new applications and
objectives. The advancement of VR has now enabled various inter-
active applications, such as healthcare, military, education, industry
prototyping, social networking, etc., in the immersive virtual envi-
ronment. Although the virtual environment is not fully immersive
yet, it is expected to be fully immersive shortly and will be widely
used in sophisticated and safety-critical applications. For instance,
the US Army has already created an augmented reality-based Syn-
thetic Training Environment (STE) to train its soldiers with millions
of artificially intelligent agents [13]. A virtual reality-based driving
simulator is typical to observe the users’ behavior in different driving
conditions [22].

In immersive virtual environments, users have to interact with
the virtual world. All of the emerging and future applications of
VR involve lots of confidential and safety-critical information. For
instance, a VR user has to insert keywords for surfing web pages,
passwords to access private accounts, credit card or bank account
information for online purchases or shopping, etc. In military train-
ing, lots of soldiers’ specific information, particular weaknesses or
strengths (e.g., acrophobia), are involved in the VR. These pieces
of information have specific characteristics while performing in a
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virtual environment. The performance counters (e.g., power con-
sumption, frequency spectrum, current/voltage consumptions, etc.)
of VR have different statistics for different VR activities. Simi-
larly, the VR user’s movements associated with the VR activities
have distinguishable properties. For instance, the VR users’ body
movements for different VR activities, such as video games, driving
simulations, military training, etc., have unique body movement
patterns. So, performance counters or VR users’ body movements
are potential side-channel information to infer the VR user activities.

The VR side-channel information poses a security threat against
confidential and personal information. For instance, in adversarial
attacks, any leakage of specific weaknesses or strengths of a particu-
lar army member could be critical in military operations. Similarly,
personal and financial information theft would create a catastrophic
situation for individual life. Several works demonstrate that it is
possible to identify the VR user’s identity based on biometric data
collected from different VR sensors [9, 17]. Fake user authenti-
cation through different imaging techniques is also possible in a
virtual environment [28]. Consequently, several countermeasures
for user authentication threats have been proposed in preexisting
literature [10, 18].

In contrast, the side-channel attacks on virtual keystrokes in VR
headsets are relatively less explored. Attacks on virtual keystrokes
can leverage different side-channel information based on key-
logging procedures. In VR, the key-logging process includes a
virtual keyboard and a pair of hand controllers or hand trackers. The
virtual keystrokes usually involve two steps: target and select keys
using hand controllers. Each virtual keystroke is related to a unique
hand gesture of the user. The only previous work [16] on virtual
keystrokes recognition of VR by Z. Ling et al. proposed vision-based
and motion sensors (e.g., accelerometer, gyroscope, and magnetome-
ter, etc.) based virtual keystrokes recognition methods exploiting
the VR user activities. Vision-based approaches are fundamentally
limited as the vision-based gesture recognition techniques depend
on the line-of-sight (LOS) with enough lighting. Moreover, vision
sensors breach user privacy, so the user would be reluctant to install
the vision sensors. From an adversary’s perspective, data acquisition
from wearable sensors and built-in sensors is difficult as the attacker
has to install malware or hardware trojan on those devices. In com-
parison with physical keystrokes, virtual keystrokes are out of scope
for several attacks, such as acoustic sound [29], electromagnetic
emission, finger trace [7], etc., based attacks.

In this paper, we present VR-Spy, a virtual keystrokes recognition
method using channel state information (CSI) of WiFi communica-
tion. There are two accessible WiFi signal properties from commod-
ity WiFi devices — received signal strength indication (RSSI) and
channel state information (CSI). Both RSSI and CSI can be utilized
to detect or localize moving objects and/or activities in the range of
WiFi signals. Therefore, localization [27] and activities detection [6]
using WiFi signals have gained great attention from the research
community due to the pervasiveness of WiFi communication in
indoor locations. VR-Spy utilizes the CSI of WiFi communica-
tion to detect the fine granular hand gestures for virtual keystrokes.
Then, using a unique hand gesture for each specific key, VR-Spy
recognizes the keystrokes. CSI-based activity detection methods are
device-free methods, which means there is no need to install any
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Figure 1: Illustration of VR-Spy

external devices or sensors, unlike vision and sensors-based activity
detection methods.

VR-Spy aims to infer keystrokes in the virtual environment of VR.
The experimental setup of VR-Spy consists of two Commercially
Off-The-Shelf (COTS) devices, an access point, and a detection
point to build up a WiFi communication link. Figure 1 illustrates
a scenario of VR-Spy where the victim (VR user) is located in be-
tween the communication link. The CSI value of the communication
link is collected from the detection point. The activities of the VR
user in the range of the communication link distort the WiFi signal,
and so introduce distinct patterns in CSI values. VR-Spy utilizes
the patterns to recognize the activities leveraging the signal process-
ing techniques. Initially, VR-Spy detects the user’s hand gestures
associated with virtual keystrokes from the CSI stream. Then, it
recognizes the keystrokes, comparing the detected gestures with the
offline-generated database of unique signatures for each character
and digit. VR-Spy is more practical and threatening than the attacks
using sensors’ information and vision techniques as the later attacks
need to install external devices in the victim’s environment.

The CSI analysis of virtual keystroke recognition is challenging
for several reasons. First, unlike the physical keyboard, a virtual
keyboard can be easily scaled, and the distance of the keyboard from
the user is adjustable based on user preferences. In this paper, we as-
sumed that the virtual keyboard would be fixed in shape and distance
from the user whenever the user starts typing on the keyboard. With
this assumption, the prior adjustment of the shape and position of
the keyboard would only introduce scaling distortion in the gesture
patterns. We have used the dynamic time-warping distance metric
to mitigate the scaling distortion effect. Second, VR user, could
quickly move around in the room scale selected by the user at the
beginning of the virtual environment setup. So, the user movement
introduces macro activities in addition to the hand gesture (micro-
activities) for the keystrokes. We proposed a five-step hand gesture
detection algorithm in the presence of macro activities. Third, the
gesture patterns in the CSI stream would change for different users
and environments, and hence, the database for the keystrokes would
be changed. To address this challenge, we include both temporal
and frequency domains of signal components during feature extrac-
tion using the time-frequency domain analysis technique, dynamic
wavelet transform.

The contributions of our paper are the following:

• We introduced a novel side-channel attack on virtual key-
logging in VR based on user activities using CSI of pervasive
WiFi signal.

• We proposed a novel five-step hand gesture detection algorithm
leveraging the signal processing techniques in the presence of
macro activities.

• We developed an end-to-end virtual keystroke recognition
model from offline fingerprint generation to online keystroke
recognition. We achieved a reasonable keystroke recognition
accuracy of 69.75% in comparison to the existing vision and
motion sensors-based methods.

• Finally, we exhaustively evaluate our design for different VR
users to validate the robustness of the attack model.

2 BACKGROUND AND MOTIVATION

WiFi is one of the most used wireless communication technologies
in the wireless local area network (WLAN). The pervasiveness of
WiFi communication draws attention from the research community
to utilize WiFi to solve various human activity recognition and
indoor localization problems. The two most used attributes of WiFi
communication are the received signal strength indicator (RSSI) and
channel state information (CSI). CSI of the WiFi signal enables one
to recognize fine-granular activities.
Channel State Information: CSI in wireless communication rep-
resents the known channel properties (e.g., channel gain, channel
phase shift) of a communication link. It includes the combined
effect of scattering, multi-path fading, and the power decaying of
the communication signal that propagates from the transmitter to
the receiver. We have built CSI based fingerprint for different VR
activities. To collect CSI information, we have implemented RF com-
munication with IEEE 802.11n standards, which support multiple-
input multiple-output (MIMO) antennas for the transmitter-receiver
pairs. In MIMO, the Orthogonal Frequency Division Multiplexing
(OFDM) modulation technique is used to communicate data packets
in different sub-frequency bands (narrow bands). In MIMO OFDM
communication techniques, the narrow-bands channel (subcarrier)
is modeled as y = h×x+n where x, y are transmitted and received
signal respectively, n is the channel noise usually modeled as cir-
cular symmetric complex normal with n ∼ c.N(0,S), and h is the
complex-valued channel frequency response (CFR). The CFR h can
be estimated as [21]:

ĥ≈ y
x

(1)

CSI of a single sub-carrier is a complex number, hi = |hi|e jsinθ

where |hi| is the channel gain and θ is the channel phase of that
sub-carrier. So, the overall CSIs of the communication link are
formed as follows:

Ĥ = [ĥ1, ĥ2, ĥ3, . . . , ĥNc ] (2)

Ĥ represents the state of the channel and hence approximate PHY
layer CSI over multiple sub-carriers. The dimension of Ĥ is Nc×
Nt ×Nr matrix where Nc is the number of sub-carriers, Nt is the
number of transmitter antennas, and Nr is the number of receiver
antennas.
Motivation: In VR, virtual key-logging involves user hand move-
ments in the virtual environment. For each keystroke, the user has
to move her hand and wrist uniquely. The movements of hands
and wrists have six degrees of freedom with three scaling and three
rotational components. The user’s hand gestures are potential side-
channel information to recognize the keystrokes due to the involve-
ment of hand gestures in the virtual key-logging. Several methods
( e.g., vision, wearable sensors, performance counters, etc.) were
proposed by the researchers to exploit the hand gesture information
to recognize the keystrokes. In this paper, we proposed a novel
method to utilize hand gesture-based side-channel information to
recognize the keystrokes. We observed that the hand gesture for
each keystroke has a unique pattern in the CSI stream. Figure 2
shows two distinct patterns for two different keystrokes in the CSI
stream. Although the pattern duration for each keystroke may vary,
each pattern has enough distinguishable features to recognize the
keystrokes. VR devices usually connect to WiFi to get access to the
internet, but the CSI of WiFi communication is entirely orthogonal
to the information of VR devices. So, the key-logging side-channel
attack exploiting the CSI of the WiFi signal is more practical and
easily applicable to these scenarios.
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Figure 2: Distinct patterns for different keystrokes

3 THREAT MODEL AND ASSUMPTIONS

In VR-Spy, we consider a WiFi communication link available in the
victim’s place, and the attacker can access the WiFi access point to
get the CSI values. As the victim’s activities can be inferred from
the CSI values, the attacker does not need to have access to the VR
devices. We assume the adversary does not install any malware or
hardware trojan in the VR device to monitor the behavior of the
device’s performance counters. Yet the attacker has prior knowledge
of the virtual keyboard layout of the VR device—such information
is typically publicly available online.

In addition, we make the following assumptions about the VR
user to infer the keystrokes:

1. In VR, the size and position of the virtual keyboard are often
adjustable—one can change the position and size of the virtual
keyboard, depending on his/her preferences. However, it is
very unlikely that a user will adjust the position or size of the
virtual keyboard while inserting text in a virtual environment.
Hence, VR-Spy assumes that the user would not change the
keyboard’s position or size during the key-logging period in
the virtual environment.

2. The virtual key-logging consists of two steps: target and select
a keystroke. In the case of targeting a keystroke, almost every
VR device uses an optical pointer. For the selection of targeted
keystrokes, the hand controllers of VR have either a touchpad
or buttons. VR-Spy assumes that after the completion of the
target keystroke, the user must select the key using the hand
controller’s touchpad or buttons. However, VR users can inten-
tionally avoid selection after targeting a key, and those cases
are out of the scope of VR-Spy.

4 FRAMEWORK OF VR-SPY

Our virtual keystrokes recognition system, VR-Spy, is a wireless
system utilizing the CSI of WiFi communication. Figure 3 shows the
workflow of the VR-Spy. The VR-Spy workflow consists of three
parts: the CSI data acquisition from commercial network interface
cards, processing, and fingerprint formation of the target gestures for
virtual keystrokes offline, and the online inference phase to recognize
the keystrokes.

In the first part, we used a transmitter and a receiver to build up the
WiFi communication link. The transmitter is working as an access
point, and the receiver as a detection point. There are two and three
antennas in the AP and DP, respectively. VR-Spy collects CSI values
from the detection point. CSI values are inherently noisy and hence
require the preprocessing of CSI values to remove the noises. We
developed a three-step preprocessing module to remove the outliers,
high-frequency components, and signal passband noises.

The second part of VR-Spy is the extraction of the gestures
and the fingerprint formation using the gestures for each virtual
keystroke. In the VR-Spy system, the transmitter continuously sends
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Figure 3: The Workflow of VR-Spy

packets to the receiver. Then, the receiver further samples the re-
ceived packet to gain fine-granular information about the channel.
The CSI matrix for the entire packet sequences becomes N×Nc ma-
trix for each transmitter-receiver antenna link, where N is the number
of data packets, and Nc is the number of subcarriers. We developed
a five-step hand gesture detection algorithm from the preprocessed
CSI matrix, considering the presence of VR user movements in real
scenarios.

The final part of VR-Spy is the inference phase. The inference
phase recognizes the keystrokes online utilizing the extracted feature
vectors of each gesture. In this part, we used a classifier to recognize
each gesture to a specific keystroke. The input of the classifier
is the feature vectors. Dynamic Wavelet Transform is performed
on the feature vectors before feeding to the classifier to reduce
the feature vector’s dimensions. Instead of Euclidean distance, we
used dynamic time warping to measure the distance between the
classifier’s features and the fingerprints.

4.1 Preprocessing of CSI Stream

The CSI streams from the network interface cards are inherently
noisy, and noise levels for different subcarriers are also varied sig-
nificantly [26]. Noises in the CSI stream can be categorized into
three classes. The first class of noise is the outlier in the CSI stream,
which is introduced by the abrupt adaptation of transmission signal
power, transmission rate, etc. It is essential to remove outliers before
using any filter operation due to the filers’ unexpected behavior in
the region of interest. The second class of noise is the out-of-band
frequency noises. In VR-Spy, the frequency band of the hand gesture
lies at the lower end of the frequency spectrum due to the slower
motion of the hands required for virtual keystrokes. So, for the
VR-Spy, the high-frequency components are the noisy signal in the
CSI stream, and hence, VR-Spy employs a low-pass filter to remove
the high-frequency components. The third class of noise in the CSI
stream is the noise involving the signal’s passband. Signal smooth-
ing techniques are most suitable to mitigate the passband noises.
VR-Spy utilizes the weighted moving average filter to reduce the
effect of passband noises.

4.1.1 Outliers Removal

Outliers are one of the dominant noise components in the CSI
streams. The source of outliers in the CSI streams is the transient
adaptation of transmission power, transmission rate, etc., of the trans-
mitted signal. Hampel outliers’ identifier is a well-known outliers
removal filter and removes only outliers rather than any desired sig-
nal components [20]. Hence, we applied the Hampel identifier filter
to remove the outliers from the CSI stream. The working principle
of the Hampel identifier filter is similar to the local median filter.
Anything out of [µ − γσ ,µ + γσ ] range is considered as outlier
where µ is the median of the local data points, σ is the deviation
from the median, and γ is the adjustment factor of the data windows
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Figure 4: Preprocessed CSI stream: (a) A raw CSI stream, (b) CSI
stream after removing the outliers, (c) CSI stream after applying low-
pass filter, and (d) CSI stream after applying the weighted average
filter. The CSI stream is taken from OFDM subcarrier 27.

(typically γ = 3). Figure 4(a) shows a raw CSI stream with outliers,
and Figure 4(b) plots the CSI stream after the removal of outliers.

4.1.2 Low-Pass Filter
The desired frequency components of the CSI stream lie at the low
end of the frequency spectrum due to the hand and wrist motion as-
sociated with virtual keystrokes, and the undesired CSI stream lies at
the high end of the frequency spectrum. The low-pass filter’s desired
properties are the flat frequency responses in both the passband and
stopband of the filter to avoid any attenuation in the passband signal
amplitude and complete rejection of the stopband signal components.
Butterworth low-pass filter is the most suitable candidate to meet the
requirements. In VR-Spy, we implement the Butterworth loss-pass
filter with a cutoff frequency, wc =

2π f
Fs

, where f is the frequency
of the desired hand gesture and Fs is the sampling frequency of
the CSI stream. Figure 4(c) plots the resultant CSI stream from
the Butterworth low-pass filter applied on the CSI stream without
outliers.

4.1.3 Weighted Moving Average
After applying the low-pass filter, some noises are still present in the
passband of the CSI stream, Figure 4(c). A smoothing filter needs
to be applied to remove the passband noise. We adopt a weighted
moving average filter with m previous data points on the low-pass
filtered signal:

hti =
[m.hti +(m−1).hti−1 + · · ·+ht1−m+1]

m+(m−1)+ · · ·+1
(3)

In Equation 3, we used linearly decreasing weights for the previ-
ous data points to emphasize the present signal value. Figure 4(d)
plots the resultant weighted moving averaged signal of the low-pass
filtered CSI stream.

4.2 Virtual Keystrokes Extraction
The preprocessing step removes all unwanted signal components
from the CSI waveforms. Here, we discuss the hand gestures extrac-
tion from the waveforms in detail. To extract the hand gestures from
CSI streams, we need to find the starting and ending points in the
waveforms. The gestures in the CSI waveforms are distributed in all
sub-carriers. Besides, the VR users could have other activities along
with the hand gestures associated with virtual keystrokes. Hence,
we need to develop an efficient and robust algorithm to extract the
gestures in the presence of other activities. In VR-Spy, we imple-
ment the following five-step algorithm to extract virtual keystrokes
from the CSI stream.
PCA of Normalized CSI Stream. The preprocessed CSI stream
from Section 4.1 has thirty sub-carriers for each transmitter-receiver
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Figure 5: CSI stream patterns for different gestures in subcarriers

pair link. The gesture for a virtual keystroke spreads in all of the
sub-carriers. Figure 5 plots the heat map of keystroke gestures
where the variation of amplitudes over the sub-carriers are distin-
guishable. However, the CSI stream with all thirty sub-carriers has
a high computational cost due to the high volume of data. As the
sub-carriers highly correlate them, the waveform matrix can map
into a lower dimension space without compromising important infor-
mation. To reduce the CSI matrix dimension without compromising
vital information, we employed principal component analysis (PCA)
based dimension reduction on the CSI matrix. Before applying PCA,
we normalized the CSI stream with zero mean, and unit variance
as PCA is not scale-invariant [5]. We observed that the first four
principal components represent the majority (e.g., at least 90% for
any CSI matrix) of information. In PCA, the principal components
are arranged in descending order of variance. As the variance of
macro activities is higher than the variance of micro activities, we
exclude the first principal component, representing the maximum
variance. Besides, the first principal component also includes most
of the system noises. Hence, VR-Spy utilizes only three principal
components (second to fourth components) for the subsequent steps.
MAD of Sliding Windows. Instead of the sample-by-sample com-
parison of the CSI waveform, we implement a sliding window tech-
nique to analyze samples in the granularity of window length. The
advantage of the window technique is that the comparison of the
samples has a larger memory bandwidth than the instantaneous com-
parison. VR-Spy calculates the mean absolute deviation (MAD)
for the windows. To reduce the impact of extreme points, VR-Spy
implements MAD instead of the variance, which squares the extreme
deviations. The equation 4 calculates the MAD of the waveforms.

HMAD
p (i, j) =

i×w

∑
k=w(i−1)+1

|Hp(k, j)−

1
w
×

i×w

∑
k=w(i−1)+1

Hp(k, j)|
(4)

where i= 1,2,3, . . . ,bN
w c, and j = 1,2,3. Hp ∈RN×3 is the principal

components of the CSI matrix, w is the length of the window. After
the computation of HMAD

p , VR-Spy takes a single waveform for each
transceiver link by adding the principal components, HMAD(i) =
∑

3
j=1 HMAD

p (i, j).
Weighted Average of Windowed Waveform. In this step, VR-
Spy applied a weighted moving average filter (Equation 3) on the
waveform generated in the step 2 to smooth the waveform.
Detection of Terminal Points. We observed that keystroke gestures
form increasing and decreasing patterns in the terminal points. So,
we find out the peaks in the waveform generated from step 3 and



choose an empirical threshold value (e.g., in our implementation, we
choose 0.05 as the threshold value) for the peak prominence. Any
peaks less than the threshold of the peak prominence are discarded.
Then, we select the starting and ending points, assuming that peaks
are the middle points of the gesture pattern. In practice, peaks are not
always in the middle. So, we add guard samples on both sides of the
pattern to avoid missing any gesture segment from the pattern. We
empirically choose the gesture pattern bandwidth and the number of
guard samples.
Gesture Extraction. In this step, we convert the extracted terminal
points of the gesture pattern to the original coordinates of the CSI
stream. Then, the gesture pattern from the second, third, and fourth
principal components is extracted using the terminal points. We
use the average of three patterns from three PCA waveforms for the
gesture patterns.

In each transceiver link, we extract a single waveform for each
keystroke. In VR-Spy, we extract the gesture pattern from all com-
munication links between the transmitter and receiver. Then, the
waveforms for a keystroke are padded together to form a single
waveform.

4.3 Feature Extraction

To classify the extracted gesture patterns into keystrokes, we need
to extract features from the patterns. The patterns for different hand
gestures are closely related, and the statistical properties, such as
energy, moments, mean, RMS values, etc., have minor variations.
So the statistical features are not sufficient enough to classify the
patterns into keystrokes. To classify the patterns successfully, we
need to consider the patterns’ whole shape as the features. Due to
the length of patterns, all patterns are computationally inefficient in
training the classifier. We employed a dynamic wavelet transform
(DWT) on the waveform of patterns to get both temporal and spatial
information. And then, we choose the scaling and detail coefficients
of DWT as the features.

Discrete wavelet transform of a waveform x[n] is defined based
on approximation coefficients, λφ [ j0,k], and detail coefficients,
γψ [ j,k], as follows [12]:

λφ [ j0,k] =
1√
L ∑

n
x[n]φ j0,k[n] (5)

γψ [ j,k] =
1√
L ∑

n
x[n]ψ j,k[n], for j > j0 (6)

and the inverse DWT is given by:

x[n] =
1√
L ∑

k
λφ [ j0,k]φ j0,k[n]+

1√
L

J

∑
j= j0

∑
k

γψ [ j,k]ψ j,k[n]
(7)

where n = 1,2,3, . . . ,L − 1, j = 1,2,3, . . . ,J − 1, and k =
0,1,2, . . . ,2 j−1, and L represents the length of the waveform, x[n].
The basis functions φ j,k[n] and ψ j,k[n] are defined as:

φ j,k[n] = 2 j/2
φ [2 jn− k] (8)

ψ j,k[n] = 2 j/2
ψ[2 jn− k] (9)

where φ j,k is the scaling function and ψ j,k is wavelet function or
mother wavelet. In VR-Spy, we use Daubechies D4 [23] as the
scaling function and wavelet function in our implementation.

Hand
Controllers

HMD

Transmitter
Receiver

Intel
NUC

Figure 6: Experimental setup of VR-Spy

4.4 Classification
After extracting the DWT-based features of gesture patterns, we
build a classifier based on the features. We choose an ensemble of k-
nearest neighbor (kNN) classifiers using features of the patterns. We
used dynamic time warping distance metric for the classifiers. The
reason behind using dynamic time warping is that the patterns for dif-
ferent gestures and different users often vary. Dynamic time warping
can measure the optimal distance between two distorted waveforms
and hence mitigate the duration and environment variation-related
distortion.

Dynamic time warping estimates minimum distance alignment
between any two-time series by dynamic programming. In contrast
to Euclidean distance, dynamic time warping provides the distance
of two time-dependent waveforms, X = (x1,x2, . . . ,xn) of length
n ∈ N and Y = (y1,y2, . . . ,ym) of length m ∈ N and allows non-
linear mapping of one waveform to another. Dynamic time warping
distance is the Euclidean distance of the optimal warping path be-
tween two waveforms calculated under the resilient of lengths and
shifts [19].

5 IMPLEMENTATION & EVALUATION

5.1 Hardware Setup
VR-Spy consists of two commercially off-the-shelf (COTS) hard-
ware devices in wireless local area networks (WLAN). We used
an access point and a detection point to form the WiFi communi-
cation link in the experimental environment. We have employed
WAVLINK dual-band WiFi router [4] with two transmitting antennas
as an access point (transmitter), and Intel NUC [1] with Intel WiFi
link 5300 network interface card [2] with three receiving antennas
as a detection point (receiver). The communication link is operating
in the IEEE standard of 802.11n with a channel width of 20MHz at
channel 157. WiFi communication has two operating bands—2.4G
and 5G band. In our experiment, we used WiFi with a 5G band
instead of the 2.4G band to avoid interference from other ISM band
communication links, such as Bluetooth communication. To collect
CSI values from the Intel 5300 network interface card, we used a
modified driver developed by Halperin et al. [11]. Linux 802.11n
CSI tool reports Nc = 30 sub-carriers for each transmitter-receiver
pair. The access point (WAVLINK-N router) and detection point
(Intel 5300 NIC) have Nt = 2 antennas and Nr = 3 antennas, respec-
tively. Hence, the dimension of the overall CSI matrix, Ĥ (Equation
2) in our experiment is 30× 2× 3. In the CSI matrix, there are
six transmitter-receiver pairs; therefore, there are six different CSI
streams.

For the experiment of virtual keystrokes in a virtual environment,
we utilized the Oculus Quest VR headset [3], which is the latest VR
headset with advanced features. Figure 6 shows the experimental
setup of VR-Spy where the VR user (Victim) is placed in between the
direct link of the transmitter and receiver of the WiFi communication



Figure 7: Layout of virtual keyboard in VR environments (Screenshot
taken from the Oculus Quest VE)

link. The distance between the transmitter and the receiver is 50
inches.
Oculus Quest is an all-in-one VR, which means it includes all the
necessary hardware in the headset. Unlike other VR devices, Oculus
Quest does not need to connect to any external devices to run the
applications in a virtual environment. Oculus Quest has a head-
mounted display (HMD) and two-hand controllers. In the headset,
there are four cameras in four corners to calibrate the real world
coordinate with virtual worlds, and also these cameras are used to
avoid any hazardous collision with the real-world when the user is
immersed in the virtual world. The hand controllers include several
buttons instead of a touchpad. The hand controllers are used to
target and select virtual objects in the virtual environments using an
optical pointer and buttons. Both the hand controllers and the HMD
are working as input devices in VR. These input devices help the
VR user to interact with the virtual world. Oculus Quest is a WiFi-
compatible device, and hand controllers are connected to the headset
through an RF communication (Bluetooth) link. Besides, the headset
can connect to the external device through both Bluetooth and USB
connectors. Hence, the headset and the externally connected device
can install/update the software and firmware of VR.
Virtual Keyboard: VR includes a virtual keyboard for the text input
in virtual environments. The user can write anything with the help
of the virtual keyboard and the hand controllers. A screenshot of
Oculus Quest’s virtual keyboard layout is shown in Figure 7. Like a
regular keyboard, there are 26 letters, 10 digits, space, and enter keys
on the keyboard. The user writes in virtual environments using an
optical pointer (e.g., one of the hand controllers’ buttons generates
an optical pointer) to target a character and then select the character
using the hand controllers’ press buttons. So, for each keystroke, the
user has to move his/her hand with a unique hand gesture. VR-Spy
aims to detect hand gestures and, hence, recognize virtual keystrokes.
Compared with a physical keyboard, the usual user’s keystroke rate
would be less in the case of the virtual keystroke. So, the duration
for each gesture will be lager than the gesture duration of physical
keystrokes.
Data Collection: We have collected the experimental data in two
different locations—lab and home. In the experimental setup, we
set up WiFi communication links between the WiFi router and the
attacker device without an internet connection in the WiFi router (in
other words, we avoid data communication). To minimize external
interferences, we did not allow any moving objects but VR users
in line-of-sight of communication links. The experiments are con-
ducted for ten participants. The voluntary participant’s ages range
from 25 years to 32 years, including variant sex, heights, weights,
and race.

5.2 Results
To evaluate VR-Spy, we design text strings from 26 letters and
ten digits. We select the text strings so that no characters are

repeatable in a string, and the overall number of appearances of
each character in the strings is equal. We randomly shuffle all 36
characters and divide the whole string into six texts with a length of
six characters. For each experiment, we repeat the text generation
procedure three times. We did ten experiments for ten different users
following similar procedures. So, the dataset for evaluation of VR-
Spy consists of ten different users’ data samples, and each character
in the dataset appears thirty times. All the experimental data was
collected from a controlled experimental environment with the least
possible interference. VR-Spy trains a kNN classifier with ten-fold
cross-validation. So, the entire dataset is split into ten partitions, and
in each iteration, one partition is considered as a test dataset. The
union of the remaining partitions is considered as a training dataset.
Performance Metric: The keystroke recognition involves two sig-
nificant steps: the gesture extraction of each keystroke and then
classifying the gesture into a keystroke. The following equation
defines the gesture pattern extraction accuracy.

AccuracyGesture = 1−
|Gpresent −Gextracted |

Gpresent
(10)

where Gpresent and Gextracted represent the number of the gesture
patterns present in the CSI waveform and the number of the extracted
gesture patterns from the waveform, respectively. The classification
accuracy is defined as:

AccuracyClassi f ication =
Ncorrect

Ntotal
(11)

where Ntotal and Ncorrect represent the total predictions and total
correct predictions respectively. The overall keystroke recognition
accuracy is the resultant of these two dependent steps. We de-
fine the keystroke recognition accuracy as: AccuracyRecognition =
AccuracyGesture×AccuracyClassi f ication.
Tuning Parameters: Here, we mentioned the major hyperparame-
ters associated with the design of VR-Spy.

• Sampling Frequency: The sampling frequency of the CSI
stream plays a vital role in terms of the resolution of gesture
patterns in the CSI stream. We select sampling frequency,
Fs = 2000 samples/second following [26].

• Cut-off Frequency of Low-pass Filter: The frequency com-
ponents of the CSI stream for keystroke gestures lie below 100
Hz. Hence, we choose the cut-off frequency of the low-pass
filter as wc =

2π f
Fs

= 2π×100
2000 = 0.31, where f = 100Hz is the

frequency of the desired gesture and Fs = 2000 samples/second
is the sampling frequency of the CSI stream.

• Length of Weighted Moving Average Filter: We heuristi-
cally choose the weighted moving average filter length. We
find the weighted average filter’s desired performance for a
length of m = 30 in our implementation.

5.2.1 Key-logging Detection
Before starting to execute VR-Spy to recognize virtual keystrokes,
we have to detect whether the VR user is writing something in the vir-
tual environment or not. Wang et al. [26] showed that the frequency
distributions of CSI waveforms for various activities, such as walk-
ing, running, sitting, and no actions, differ significantly. Similarly,
we also investigate the frequency distribution of CSI waveforms
for various virtual activities. We consider three VR activities to
simplify the experimental design: watching videos, playing video
games, and key-logging. The first two VR activities, playing games
and watching 3D or 360◦ videos in the virtual environment, are
popular and frequently used VR applications. The user behavior
during these two VR activities varies depending on the content of



Figure 8: PSD of second principal components of CSI matrix for (a)
key-logging, (b) gaming, and (c) 3D video activities

videos or games. The third activity, virtual key-logging, is not a
specific VR application; instead, it may occur with any applications
that require searching or inserting any text. Apparently, the least
user movements would be associated with watching videos, and the
highest activities with gaming.

We analyze the second principal component of the preprocessed
CSI matrix for consistency with the VR-Spy framework instead
of analyzing the raw CSI matrix. We estimate the fast Fourier
transform (FFT) based power spectrum density (PSD) for all three
VR activities. Figure 8 shows the PSD of VR activities. The PSD
of games and key-logging activities is similar but has a different
energy level. Table 1 shows the energy of the CSI stream for VR
activities. The energy is calculated from the PSD of the waveforms,
∑ f PSD( f ). We find that the CSI stream’s energy for key-logging
activities is between 90 and 95.

5.2.2 Individual Keystroke Recognition Accuracy

We evaluate the performance of VR-Spy for each character. VR-Spy
fused all user data into a single dataset to estimate individual char-
acter recognition accuracy. Then, we trained the classifier for 36
characters. Figure 9 plots the accuracy of individual keystroke recog-
nition accuracy. The minimum accuracy is 59.8% for the keystroke
‘5’, and the maximum accuracy is 76.18% for the keystroke ‘9’. The
average accuracy of the keystrokes is 69.75%. The average accuracy
of virtual keystroke recognition is reasonable with the vision and

Table 1: Energy of CSI stream for different activities

Activity Energy
Key-logging 91.40
Games 133.71
Videos 80.68
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Figure 9: Individual keystroke recognition accuracy averaged over all
users

Figure 10: Color map of a confusion matrix for individual character
recognition averaged over all users

motion sensors-based keystroke recognition methods.
Figure 10 displays the color map of the confusion matrix for the

individual keystrokes. The color map shows a prominent diagonal,
and the rest of the points have approximately uniformly distributed
small weights. So, the model does not predict false positives for
any biased character. The confusion matrix is also averaged over all
users’ data.

5.2.3 Individual User’s Accuracy
To evaluate the robustness of VR-Spy for different users, we exper-
iment with VR-Spy for ten different users. We separately trained
VR-Spy for all ten users. The performance differs for the different
users as the gesture patterns are often varied in duration and motion
for different users. Figure 11 plots the average keystroke detection
accuracy for ten different users. The variance of the accuracy among
the users is 19.17.

6 RELATED WORKS

Attacks at VR. Recently, VR has become a target of attackers from
various perspectives. Researchers explore the possible attack sur-
face to find out the vulnerabilities associated with VR technologies.
Several researchers address security concerns of authentication meth-
ods [9, 10, 17, 18, 28]. George et al. [10] investigate the security of
authentication methods in HMD-based VR systems. The authors
find out that the PIN and pattern-based authentication methods in
VR can be more resistant to the attacker than the methods applied to
the smartphone in the physical world by evaluating the resistance to
shoulder surfing attacks via human eyes. In Oculock, Luo et al. [17]
proposed an authentication system utilizing the human visual system
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Figure 11: Keystrokes recognition accuracy for individual users aver-
aged over all characters

rather than the PIN or pattern-based methods. The paper explained
that human visual system-based authentication methods are more
suitable in VR with HMD than smartphones and PCs. However,
there are limited preexisting works on the security of virtual key
logging in VR. In the only prior work, Ling et al. [16] presented com-
puter vision-based and motion sensor-based models to exploit the
side channel information of users’ activities to infer passwords for a
VR device. The models are based on the Samsung Gear VR headset.
There are two ways to target and select keys in the virtual keyboard:
a) the controller touchpad is used for both targeting and selecting the
keys, b) the headset is used for targeting, and the controller touchpad
is used for selecting the keys. In the computer vision-based attack
model, a stereo camera is used to record the VR user’s activities, es-
pecially the headset and controller touchpad motions. The input text
is then inferred from the target and selection actions achieved by the
headset and the controller. In the motion sensor-based attack model,
a malware or hardware trojan is installed in the victim’s device to
obtain motion sensor readings. Then, the input text is inferred using
pre-computed rotation angles on the assumption that the size and
position of the virtual keyboard are always fixed.
Gesture computing using WiFi. A wide range of human-computer
interaction and mobile computing problems have been extensively
studied using the WiFi signal over the last decade. In [6,15], physical
keystrokes and mobile phone password recognition methods were
developed, recognizing fine-granular finger gestures. Compared
with the physical keystrokes recognition attack in [6], in VR-Spy,
the user can adjust the size and position of the virtual keyboard
before starting key-logging—such uncertainty makes the attack on
virtual keystrokes much harder than attacking a user with a phys-
ical fixed-position-and-size keyboard. Fu et al. [8] developed an
air handwriting recognition method for VR devices leveraging the
CSI of WiFi communication. Li et al. [14] proposed an American
Sign Language (ASL) detection method to communicate with smart
devices for physically challenged people. Moreover, researchers
explore lots of other sophisticated fine-granular information-based
problems such as speech recognition [24], gait recognition [25],
etc., utilizing CSI. However, to the best of our knowledge, there
is no prior work on the virtual key-logging attack in VR headsets
leveraging the CSI signal variation.

7 DISCUSSION

In this section, we will discuss the critical hyper-parameters and lim-
itations of VR-Spy and point out potential future research directions.
Keyboard Layout. The gesture patterns for different keystrokes
are related to the virtual keyboard layout. In VR-Spy, we used
the default keyboard layout of Oculus Quest, the most common
virtual and physical keyboard layout. It is possible to design a
customized keyboard layout, and in those cases, VR-Spy cannot be

implemented directly.
Antennas. The CSI signal strength inversely depends on the dis-
tance between transmitter and receiver antennas. In the evaluation
of VR-Spy, we set the distance between transceivers to 50 inches
(4.167 f eet). The performance will vary if the distance between the
antennas is changed. The types of antennas, such as omnidirectional
and directional antennas with different gains, directly affect the CSI
signal strength. We installed omnidirectional antennas to simulate
the real environment (mostly used WiFi antenna) in our experimental
setup. The performance of VR-Spy might increase with high-gain
directional antennas.
Frequency Band. WiFi communication technology has two operat-
ing frequency bands, 2.4G and 5G. There are many other ISM band
communication technologies in the 2.4G band, so the WiFi signal at
2.4G has lots of interference. The signal strength of the 5G band is
also better than the 2.4G band.
Sampling Rate of CSI. The sampling rate of the CSI stream affects
the gesture resolution of keystrokes, e.g., how fast a user can move
his/her hand to input a key. Besides, the minimum time gap between
two consecutive keystrokes is also related to the sampling rate of
CSI. So, the time resolution of keystrokes will increase with the
higher CSI sampling rate. A higher sampling rate will increase the
virtual keystroke detection and recognition accuracy from the CSI
stream. Following the discussion of the sampling rate of CSI for
fine-granular activity detection in [26], we choose 2000 samples per
second as the sampling rate of the CSI stream.
Dataset. The ways of offline database formation have an effect on
the adaptability of the attack model in robust attack scenarios. We
chose all the strings with similar lengths to ease the complexity of the
database development in the VR-Spy experiment setup. Although
our database is working well enough in the inference phase with
variable string lengths, the attack model would perform better for
a database with different string lengths. Besides, the size of the
database has an impact on the performance of the model. A dataset
with large samples increases the accuracy of the model. In our case,
we collect thirty samples per character in the database.
Adaptability. Although VR-Spy targets VR devices, the workflow
of VR-Spy is easily adaptable to any virtual keystroke recognition,
including augmented reality (AR) devices.

8 CONCLUSION

In this paper, we presented a novel human-activity-based side-
channel attack, VR-Spy, at virtual reality devices to infer the text
inputs. VR-Spy exploits the variations in channel state informa-
tion (CSI) of pervasive indoor WiFi signals to detect and recognize
the micro activities associated with virtual keystrokes. The attack
consists of a novel five-step hand gesture detection algorithm to ex-
tract the virtual key-logging gestures from the variations of the CSI
stream. VR-Spy leverages signal processing techniques to extract
the gesture patterns from the CSI waveforms and machine learning
algorithms to recognize the keystrokes from gesture patterns. Im-
plementation of VR-Spy consists of two commercially-off-the-self
(COTS) devices, a transmitter (WAVLINK Router), and a 50-inch
apart receiver (IWL 5300 NIC) to build the WiFi communication
link. The victim, the VR user, is placed in between the transmitter
and receiver. VR-Spy has obtained an average virtual keystroke
recognition accuracy of 69.75%. In future work, we will consider a
more relaxed threat model allowing moving objects with the victim
and will investigate the attack in unknown keyboard layouts.
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