
A Secure Resilient Real-Time Recovery Model,
Scheduler, and Analysis

Abdullah Al Arafat∗, Sudharsan Vaidhun†, Bryan C. Ward‡, Zhishan Guo∗
∗Department of Computer Science, North Carolina State University

†Department of Electrical and Computer Engineering, University of Central Florida
‡Department of Computer Science, Vanderbilt University

Abstract—Real-time and embedded systems are increasingly
being applied in the command and control of safety- and mission-
critical applications such as autonomous vehicles and critical
infrastructure. Meanwhile, to enable new capabilities, we are
witnessing a rapid growth in the complexity and connectivity of
such devices. Unfortunately, such designs often introduce new
attack vectors, necessitating inventions that provide stronger
security and resilience. This paper presents a secure and resilient
scheduling technique for hard real-time applications. Specifically,
this approach builds upon the well-known mixed-criticality
scheduling framework and demonstrates a new dimension of
criticality: security criticality. In the presented model, low-
security-criticality workloads are dropped in the event of a
malicious event, both to minimize the attack surface, as well
as enable the timely scheduling of both a recovery task and the
re-execution of the victim task. This paper demonstrates how
the existing mixed-criticality scheduling approaches are overly
pessimistic in light of this model, and presents a new scheduling
algorithm for it. The performance of the presented algorithm
and analysis is evaluated through schedulability experiments.

I. INTRODUCTION

Real-time and embedded systems are being employed across
society to monitor and control increasingly complex cyber-
physical systems. For example, modern automobiles have
dozens of onboard computers to control the engine, transmis-
sion, braking, driver-assist features, and infotainment systems.
In industrial-control applications, the Industrial Internet of
Things (IIoT) promises greater efficiencies through increased
communication, coordination, and autonomy of industrial pro-
cesses ranging from power systems to manufacturing.

As a society, we are increasingly reliant upon such systems
and enjoy the capabilities and efficiencies such interconnected
systems offer. However, the complexity of these systems
increases the attack surface, and their increasing connectiv-
ity makes vulnerabilities even more accessible to attackers.
Furthermore, embedded systems are often not developed with
the same cyber-security scrutiny that is common in general-
purpose systems. For example, the Mirai botnet [2] exploited
the unchanged universal factory-default password to co-opt
webcams into a powerful botnet. While many attacks can be
detected and/or prevented via known defensive techniques, it
is critical that a system is able to respond and recover from
such threats while preserving real-time constraints.

Common cyber-security defenses are often eschewed in
real-time and embedded systems. For example, address-space
layout randomization (ASLR) is employed ubiquitously across
general-purpose computing systems and is enabled by de-

fault in Windows, Mac OSX, and Linux. But randomization-
based defenses are often avoided in real-time systems for
predictability reasons as they can significantly increase worst-
case performance [7], [9].

The most common class of vulnerabilities are memory-
corruption vulnerabilities, which are bugs that an attacker can
exploit to corrupt regions of memory. Microsoft and Google
have reported such vulnerabilities account for approximately
70% of vulnerabilities in their codebases [19], [22]. While
there are techniques to eliminate such vulnerabilities, they
are expensive (Softbound [18] has overheads over 100%), or
impractical (rewrite all code in a memory-safe language such
as Rust). Therefore, most runtime defenses protect against
memory-corruption-based attacks by seeking to prevent ex-
ploitation by crashing the process. For example, control-flow
integrity (CFI) [1], [24] performs checks at control-flow tran-
sitions to ensure valid branch targets, and crashes the process
upon invalid control flow. Importantly, runtime defenses are in-
tegral to the protected task, that is, they are executed within the
protected process, not in a separate process as in monitoring-
based security approaches [10], [11], [12], [13]. We note that
runtime defenses are designed to prevent exploitation, while
monitoring-based approaches detect anomalies and evidence
that the system has been compromised. Therefore, monitoring-
based security approaches are orthogonal to the runtime de-
fenses we consider, but are outside the scope of this work.

Processes in real-time and embedded systems often control
physical devices, and hence cannot simply crash to prevent an
attack—such an approach could itself compromise the system.
Instead, in such applications, computation could be restarted
to maintain continuous safe control of the physical process.
However, restarting a real-time job may significantly impact
its ability to complete before its deadline, and may introduce
additional demand that may in turn compromise the temporal
integrity of other tasks in the system, if not properly mitigated.

These observations motivate the need for new task models,
scheduling algorithms, and analysis to enable resilience to
cyber attacks, i.e., the ability to maintain some safe level of
operation while recovering from an attack. While there may
be simple or naı̈ve means of supporting such behavior in
existing scheduling and analysis frameworks, fully maximizing
the platform utilization while enabling such resilience requires
fundamentally new models, algorithms, and analysis.
Mixed criticality. This problem has several important com-
monalities with mixed-criticality (MC) scheduling, specifi-



cally, the ability to operate in a degraded mode of execution.
Critically, however, MC scheduling models have principally
been developed to handle one aberrant behavior—temporal
overruns—not security incidence. However, Burns has recently
argued that work on MC systems should be generalized to
multi-mode systems [6]. This work is an exemplar of this
argument, and we demonstrate a multi-mode system in which
mode switches are triggered by security events rather than
timing overruns.

There are several important similarities and differences
between the standard Vestal-model [23] for MC scheduling
and the needs of a resilient real-time recovery model. For
example, when a security event is detected, it is useful to
shed less-critical workloads to ensure the continued correct
operation of high-criticality work. Shedding work is especially
useful for security as it can also reduce the attack surface of
the system. There are, however, several important differences.
First, when a defense prevents an attack it crashes the process,
requiring re-execution of the job and additional processing
time. Another key difference with security criticality is that
memory-corruption attacks are most likely to target only
a single task, not all high-criticality tasks simultaneously.
Memory-corruption attacks target vulnerabilities in code, and
because different tasks have different code, they are not likely
to be vulnerable to the same exploit payloads.

As a result, adapting existing MC system analysis results
will be too pessimistic. In addition, in an MC environment, the
system often returns to normal mode when a transient overload
condition subsides. In contrast, returning to a normal mode of
execution after detection of a cyber threat may require addi-
tional recovery processing for computations such as (i) adding
the malicious input to a blocklist to ensure the re-executed task
will not be attacked, [17] (ii) forensic analysis, (iii) human-
operator communication, and/or (iv) other actions to harden
the security posture of the system, such as substituting binaries
with stronger-defended ones, etc. Such additional computation
time must also be modeled and analyzed. Notably, shedding
less-critical workload, with the proper analysis, frees computa-
tion time to enable such recovery processing without affecting
the utilization of the normal mode.
Related Works. Previous work has studied co-scheduling se-
curity monitor tasks [10], [11], [12], [13] with real-time tasks
in fixed-priority partitioned multi-core systems with/without
allowing migration of monitor tasks. These papers assume
that the security tasks monitor security events and potentially
detect the attacks (i.e., works as intrusion detection system
(IDS)). However IDS does not stop attacks, they merely
attempt to detect malicious activity, while run-time defenses
(e.g., CFI [8], [24], [27], data flow integrity (DFI) [4]) prevent
attacks from succeeding by crashing the process. Note that,
unlike IDS, runtime defenses are integral to the task itself,
and are not independently scheduled. Therefore, detection
using runtime defenses is real-time and does not have any
scheduling overhead. In SR3, tasks are instrumented with a
runtime defense instead of IDS.
Contributions. Based on these observations, we present the

first resilient recovery scheduling model and analysis for
secure real-time systems. We identify that temporal criticality
and security criticality are orthogonal dimensions of criticality
and that by designing a system of differing security criticalities
enables both efficient recovery after an attack, as well as the
minimization of the attack surface in the presence of a cyber
threat. We make the following contributions:

• We propose SR3, a secure and resilient real-time recovery
task model that can recover from an attack at runtime
while maintaining the real-time correctness of high-
security-critical tasks.

• We develop a scheduling algorithm for the presented task
model using earliest-first deadline (EDF) with modified
virtual deadlines for security-critical tasks.

• We conduct schedulability evaluations that demonstrate
the effectiveness of our scheduling algorithm over
adapted existing scheduling schemes.

II. MODEL AND PROBLEM

A. Threat Model

We assume a threat model consistent with other prior works
on run-time defenses [8], [24], [27]. Specifically, we assume
a write-what-where vulnerability that an attacker can leverage
to corrupt code pointers1 to hijack control flow to attacker-
specified location(s). Significant research has shown that even
such simple and common vulnerabilities can be exploited
using return-oriented programming (ROP) [21] or other attack
techniques (e.g., [26]) to completely hijack control flow and
implement Turing-complete attacker-controlled logic. This is
a very common and powerful threat model.

We assume the system is instrumented with a real-time
runtime defense such as control-flow integrity (CFI) [8], [24],
[27], [20], data-flow integrity [4], or an address-randomization
defense [7], [9]. Notably, all of these defense techniques
prevent further exploitation of a task by crashing the process.

Attacks on the scheduler or RTOS itself are outside the
scope of our threat model. We note, however, that the scheduler
and RTOS can be made trustworthy if using a verified RTOS,
(e.g., seL4 [15]), or by using a trusted execution environ-
ment (e.g., ARM TrustZone) [25]. Notably, however, attacks
related to the confidentiality (e.g., side-channel attacks) of the
workloads are out of the scope of this work. We also note
that IDS as additional security tasks scheduled with regular
workloads [10], [11], [12], [13] are outside the scope and, in
fact, these models are orthogonal to SR3.

B. System Model

Let τ ′ = {τ1, τ2, ..., τn} be a set of n sporadic and implicit-
deadline tasks scheduled on a uniprocessor. Each task τi can be
represented by three tuple {Ci, Ti, ςi}, where Ci is the worst-
case execution time (WCET), Ti is the minimal inter-arrival
separation as well as the relative deadline (i.e., Di = Ti) of
the task instances (jobs). We assume that τi is instrumented
with runtime security defense(s), and that their overheads are

1A code pointer is any address stored in a data section that points to
executable code. Return addresses on the stack are a frequent attacker targets.

2



TABLE I: Tasks of differing temporal and security criticalities.

Temporal Criticality
High Low

High Safety-critical Encryption key management
Security Control Processing software, or IDS

Criticality Low Processing non-mission- Infotainmentcritical sensor inputs

included within Ci. We assume each task can potentially
release an infinite sequence of jobs. Let ςi ∈ {0, 1} denote
whether task τi is of high or low security criticality. We use
τς = {τi|ςi = 1} and τ

Cς
= {τi|ςi = 0} to denote the set of

high-security-criticality (HI-security) tasks and low-security-
criticality (LO-security) tasks, respectively. We model HI- and
LO-security tasks based on the observation that some tasks
are not essential to maintain safe or secure operation of the
system, especially when the system may be under attack. This
is depicted in Table I. For example, in an automotive sys-
tem, infotainment services are not mission-essential functions,
and should neither interfere with high security- or temporal-
criticality tasks. Some tasks are also high criticality with
respect to both security and temporal criticality, as they support
mission-critical functionality. However, there are some tasks
that could be critical to the security of the system, but be less
critical to the temporal correctness of the system. For example,
intrusion detection software or key management for encrypted
communication may be critical to the security of the system,
even if their timing is not mission critical. Alternatively, some
sensor readings may support optional or non-mission-critical
functionalities, which could be disabled in the presence of a
security threat. However, in order to maintain consistent state,
their processing is timing critical.

Note that LO-security tasks may themselves contain vul-
nerabilities. When the system is under attack, minimizing the
attack surface is a valuable defense in and of itself. Given this
motivation and model, we define the following terms:

Definition 1. (Victim Task and Targeted Task) Any task
τv ∈ τ ′ is a victim task when it is attacked during run-
time. As control-flow-hijacking attacks leverage one or more
vulnerabilities within a single process only, we assume that
an attack will target a single task. We assume the attack is
detected by the process crashing as a result of a defensive
mechanism such as CFI [1], [8], [24], as described in our
threat model. Consequently, the attack is detected at or before
the task completes its execution budget. We further denote a
HI-security victim task τv ∈ τς as a Targeted Task, τt, with an
execution budget of Ct.

Definition 2. (System Modes) The system will begin its
execution under normal mode, during which no attack to
security task is detected. During runtime, once a victim task
is identified, the system will immediately switch into recov-
ery mode. Proper actions (see below) will be taken during
recovery mode to prevent the system from further exploitation.

When transitioning to the recovery mode, additional actions
may be taken to facilitate recovery, for example, additional
monitoring or validation of the system, forensic analysis,

TABLE II: Workload considered in Example 1.

Task ID Ci Ti ςi
τ1 1 3 0
τ2 2 9 1
τ3 5 25 1
τR 1.5 15 −

communication with human operators, etc. We model this
additional workload as a recovery task. This task is in addition
to the regular HI- and LO-security tasks as defined below:

Definition 3. (Recovery Task) The recovery task τR =
{CR, TR} is a task that is activated/released upon detection
of an attack (which only leads to execution failure) during
runtime, where CR is its execution budget and TR is the
period. The release time of the recovery task, rR, is equal
to the system mode switch instant. Note that each HI-security
task could have an individual recovery task. However, from
the analytical perspective, taking CR = max{Ci

R} covers
the worst-case where Ci

R is the WCET of recovery task
corresponding to ith HI-security task.

The whole SR3 system workload contains the HI- and LO-
security tasks, as well as the recovery task, i.e., τ = {τ ′, τR}.
Correctness Criteria. Given the SR3 system, which contains
a set of HI- and LO-security tasks and the recovery task, a
correct scheduler must

1) guarantee that all HI- and LO-security tasks receive
enough execution and meet their deadlines during normal
mode;

2) ensure that all HI-security tasks (that are not experiencing
any failure, i.e., except the Targeted task) continue to
receive normal execution budget and meet their deadlines
during recovery mode;

3) ensure that if the victim task is a Targeted task (the failing
HI-security2 task being attacked), then the victim task will
receive another full re-execution budget (of its original
WCET, Ci) beyond the mode switch point and meets its
original deadline;

4) provide the recovery task with enough execution budget
before its deadline during recovery mode;

Our objective is to identify a correct online scheduling
mechanism and derive an offline schedulability test. Note that
once there is a detected attack (and thus a mode switch),
guarantees to service of LO-security tasks are no longer
required, and this workload is dropped to minimize the attack
surface. We assume that the malicious input can be placed
in a blocklist, and that either a known-safe or sanitized input
is used by the re-executed job. This assumption is consistent
with prior work [17].

Unfortunately, the standard uniprocessor scheduling algo-
rithms (e.g., Earliest Deadline First (EDF)) cannot correctly
schedule the task set. An illustrative example is given below:

2When the victim task is a LO-security one, a mode switch is triggered
immediately, while no re-execution budget will be allocated, as no guarantees
are provided to LO-security tasks in recovery mode.

3



Example 1. Consider a task set τ = {τ1, τ2, τ3, τR} with
parameters presented in Table II. This regular sporadic task
set is schedulable on a uniprocessor system under the earliest
deadline first (EDF) scheduler as the utilization (

∑ Ci

Ti
) of the

task set is 0.855 (including the utilization of recovery task).
Now let us map the SR3 system workload to a sporadic

task model for EDF scheduling by doubling the execution
of HI-security tasks, (C ′

2 = 4, C ′
3 = 10) and keep the

recovery task always active. After mapping the task set to a
sporadic task model for EDF scheduling, the utilization of the
mapped task set becomes 1.277. Therefore, the mapped task
set with security awareness is not schedulable by EDF. We will
later see that the task set is schedulable under our proposed
scheduling algorithm.

III. SCHEDULING ALGORITHM

In this section, we present our proposed scheduling algo-
rithms for the SR3 system workload. We need to re-execute
the targeted task after an adversarial attack following the task
model. As demonstrated by Example 1, directly employing
EDF scheduler may lead to a too narrow scheduling window
for HI-security tasks upon attack and thus lead to deadline
misses. Therefore, we proposed to adopt the concept of
virtual deadline, such that the HI-security tasks receive proper
‘promotion’ under the normal mode.

Let us start with a general overview of our proposed
algorithm. At any instant in normal mode, we aim to promote
the execution of jobs of HI-security tasks over LO-security
tasks, maintaining the deadline constraints of all tasks. To do
so, we compute a virtual deadline Dv

i = x · Di for each
HI-security task such that the virtual deadline is less than
or equal to the original deadline of the tasks (i.e., no task
exceeds the original deadline). After computing a suitable
virtual deadline for each HI-security task, HI-security tasks are
scheduled using their virtual deadline and LO-security tasks
with their original deadline following the EDF algorithm. The
window between the virtual and actual deadlines for each HI-
security job is ‘reserved’ for the HI-security task’s potential
re-execution upon attack/mode switch. Further, in recovery
mode, all LO-security tasks are dropped immediately at system
mode-switch instant. Then, in recovery mode, all HI-security
tasks and the recovery task are scheduled following the EDF
algorithm using the original deadlines.

We present a way of determining the virtual deadline of the
HI-security tasks and so the schedulability test of the schedul-
ing algorithm. In Subsection III-A, we present the utilization-
based schedulability analysis of the proposed algorithm (we
denote it as sEDF-VD to distinguish it from EDF-VD [3]).

A. sEDF-VD

Given a sporadic implicit-deadline task set τ , one needs to
perform a schedulability test for the task system prior to the
runtime to determine whether the task system is schedulable
or not. If the task system is schedulable, the sEDF-VD finds
a virtual deadline Dv

i = x ·Di for all HI-security tasks via a
common ‘shrinking factor’ x ∈ (0, 1]. In Algorithm 1, we

Algorithm 1: sEDF-VD based Schedulability Test
(Virtual Deadline Setting)

Input: A SR3 system workload τ = {τς , τ
Cς
, τR}

1 x← Uς

1−U

Cς
; // common shrinking factor for all τi ∈ τς

2 for ∀τt ∈ τς do
3 if xU

Cς
+ Uς + ut + uR > 1 then

4 return FAILURE; // no x that satisfy Theorem 1
5 end
6 end
7 return x;

present an offline schedulability test for the task set. The
algorithm returns a common shrinking factor x for each HI-
security task if the task set is schedulable, or FAILURE if
the task set is not schedulable under the correctness criteria
presented in Section II. The initial shrinking factor x in Line
1, Algorithm 1 comes from Lemma 1 and the conditional
statement in Line 3, Algorithm 1 from Lemma 2. Both
Lemmas are discussed in the following.

We need to determine a feasible range of x and demonstrate
its correctness. First we introduce additional notation.
Utilization parameters. The utilization of an implicit-
deadline sporadic task is the ratio of its WCET (Ci) to the
period (Ti). The utilization of the task system is the summation
of all individual tasks in the set.

• ui =
Ci

Ti
is the utilization of task τi.

• U
Cς
=

∑
τi∈τ

Cς
ui is the utilization of LO-security task set.

• Uς =
∑

τi∈τς
ui is the utilization of HI-security task set.

We will now derive the schedulability constraints of the SR3

system workload considering the presence of a targeted task
(τt ∈ τς ) instead of any victim task through Lemma 1 and 2.

Lemma 1. In normal mode, all jobs of LO-security tasks
meet their actual deadline and all jobs of HI-security tasks
meet their virtual deadline under sEDF-VD for the following
sufficient inequality condition,

x ≥ Uς

1− U
Cς

(1)

Proof Sketch. Let us consider a fluid schedule [14] (a con-
ceptual scheduling scheme where each task gets a uniform
execution rate over the scheduling period and the scheduler is
schedulable if the total execution rate of all tasks is less than or
equal to one), where each task in the task set is continuously
assigned an execution rate of ui for each LO-security task.
Now, for HI-security tasks, we use virtual deadline deduced
by multiplying the actual deadline by x(≤ 1). Therefore, the
fluid scheduler will assign a continuous execution rate of ui

x
for each HI-security task. So, using the utilization bound of
EDF [16], the task set will be schedulable if,∑

τi∈τ
Cς

ui +
∑
τi∈τς

ui

x
= U

Cς
+

Uς

x
≤ 1

So, the fluid schedule is feasible as the total utilization is less
or equal to one. As the EDF in preemptive uniprocessor is
optimal, the fluid schedule is also feasible by EDF.

4



Lemma 2. In recovery mode, all HI-security tasks meet their
actual deadlines, and the recovery task meets its deadline
under EDF, if

xU
Cς
+ Uς + ut + uR ≤ 1 (2)

where ut and uR is the utilization of targeted task (τt ∈ τς )
and recovery task, respectively.

Proof Sketch. Let us consider contrapositive. Suppose a job
misses its deadline. Being in recovery mode, all LO-security
jobs have been dropped and cannot miss a deadline. Therefore,
the job missing its deadline must be a HI-security task. Let
us consider a minimal instance3 of jobs released by the task
set, I , on which one job missed the deadline. Without loss
of generality, we consider the earliest release time of a job in
I (the last idle instant) as zero (0), and the deadline missed
instant of a job in I as td. Let t∗ denote the mode switch
instant triggered by the job of targeted task τt. Note, the mode
switch instant must be no later than the job’s virtual deadline,
i.e., t∗ ≤ Dv

t .
Note that all jobs in I must experience some execution in

[0, td) except the job missed deadline at td. Let us consider the
earliest release time of the job J amongst those executed in
[t∗, td) is a, and its deadline d. We will calculate the total ex-
ecutions of jobs in set I for four mutually exclusive subsets—
subset of jobs from LO-security tasks, other HI-security tasks4,
the targeted task, and the recovery task separately.
Subset-1. Any LO-security task τi ∈ τ

Cς
in I has an execution

wi in the considered scheduling window,

wi ≤ (a+ x(td − a))ui (3)

Subset-2. Any other HI-security task τi ∈ τς \ τt in I has an
execution wi in the considered scheduling window,

wi ≤
ui

x
a+ (td − a)ui (4)

Subset-3: The targeted task τt ∈ τς has an execution,

wt ≤
a

x
ut + (td − a)2ut (5)

Subset-4. The recovery task τR has an execution of,

wg ≤ (td − a)uR (6)

Now, total execution of the jobs in I would be greater than
the scheduling window length, td to miss a deadline. ∑

τi∈τ
Cς

wi

+

 ∑
τi∈τς\τt

wi

+ wt + wg > td

⇒ xU
Cς
+ Uς + ut + uR > 1; (simplified using eq. 3,4,5,6)

Thus, the minimal job instances, I will be schedulable if,

xU
Cς
+ Uς + ut + uR ≤ 1

3By minimal instance, we mean any set of jobs from which reducing one
job would make the jobs set schedulable.

4By ‘other HI-security tasks’, we refer all HI-security tasks but the targeted
task (τς \ τt).

Hence Lemma 2 follows.
Using the Lemma 1 and 2, we get following scheduling test

for sEDF-VD:

Theorem 1. A SR3 system workload τ , where the victim task
is a targeted task, can be successfully scheduled by sEDF-
VD on an uniprocessor if the following (sufficient) conditions
hold:

(A) : x ≥ Uς

1− U
Cς
; [from Lemma 1]

(B) : x ≤ 1− Uς − ut − uR

U
Cς

,∀τt ∈ τς ; [from Lemma 2]

Example 2. Let revisit the task set given in Example 1. Using
Theorem 1 (A), we get x ≥ 0.633 and for Theorem 1 (B), x ≤
0.766 for the task set. Note that, in condtion (B) of Theorem 1,
we need to find the lowest value of x which can be found
using max{ut|τt ∈ τς} in calculation of x. So there is an x
that satisfy both of the conditions of Theorem 1. Therefore, the
task set is schedulable for sEDF-VD.

Note that if we map the SR3 system workload of Table II
to mixed-criticality model [23] doubling the execution time
of all HI-security tasks in recovery mode (Cn

i = Ci, C
e
i =

2Ci,∀τi ∈ τς) and the recovery task, τR as (Cn
R = 0, Ce

R =
CR), then the lower limit of shrinking factor x by Theorem 1
of [3] is 0.6333 and the upper limit by Theorem 2 of [3] is
0.1666. Therefore, there is no x that satisfy the schedulability
constraints of mixed systems by EDF-VD presented in [3] for
this mapped task set.

IV. EVALUATION

In this section, we evaluate our proposed algorithm. We will
first explain the baseline algorithms that we consider. Next,
we will present the workload generation procedure used to
generate random task sets. Finally, we present the simulation
results and discuss observations.
Baselines. The first baseline algorithm that we consider is
the earliest deadline first (EDF) algorithm [16]. The EDF
algorithm is used to schedule a workload that follows the
sporadic task model and therefore to utilize the EDF algorithm,
we map our proposed SR3 system to the standard sporadic
task model by doubling the utilization of each HI-security
task in the system to account for the worst-case. Additionally,
we also include the recovery task in the task set. With our
proposed task model mapped to the sporadic task model, we
use the utilization-based schedulability test for EDF algorithm
to determine the schedulability.

The second baseline algorithm that we considered is the
earliest deadline first with virtual deadline (EDF-VD) algo-
rithm. EDF-VD algorithm is a widely accepted scheduler for
the Vestal’s mixed-criticality task model. We map our SR3

system to the mixed-critical task model by allocating twice
the utilization in the recovery mode for the HI-security tasks.
We also add the recovery task as a HI-criticality task to the
system where the normal execution budget of the recovery
task is assumed to be 0. With these modifications, we apply the

5



0.0 0.2 0.4 0.6 0.8 1.0

Utilization of tasks in normal mode U

0

20

40

60

80

100
A

cc
ep

ta
n

ce
R

at
io

%

Algorithm

sEDF-VD

uR
0.1

0.2

0.3

0.5

EDF [15]

EDF-VD [3]

Fig. 1: Acceptance ratio of three different algorithms under
multiple utilization settings

EDF-VD schedulability test [3] to determine the schedulability
of the task set.
Workload generation. The SR3 task set generation is con-
trolled by the following parameters, where the default values
are represented in bold.

• n = {5,10, 15, 20}: Number of tasks in a task set
• uR = {0.1, 0.2,0.3, 0.5}: Utilization of the recovery task
• U = U

Cς
+ Uς = {x/20 | 1 ≤ x < 20}: Total utilization

of the task set in normal mode
• P = {0.1, 0.2,0.5, 1.0}: Probability of a task being HI-

security task
The task set generation begins with a target value for

normal mode utilization given by U . Using the UUniFast
algorithm [5], we derive the set of task utilizations in normal
mode. The recovery task utilization in recovery mode is given
by the uR parameter. For each setting, we generate 1000 task
sets and present the results below.

Figure 1 reports the variation in acceptance ratios for
varying system utilizations under different recovery task uti-
lizations.
Observations. When applying EDF, it is seen in Figure 1 that,
the acceptance ratio begins to drop as U increases beyond
0.5, irrespective of the recovery task utilization. This can be
explained by the added pessimism to be considered by the
EDF algorithm in the recovery mode. As the recovery task
utilization increases, the performance further decreases. This
behavior can be attributed to the added workload contributed
by the increasing utilization of the recovery task.

When the EDF-VD algorithm is modified to schedule the
proposed task model, the performance follows a similar trend
as the EDF algorithm as shown in Figure 1. This pattern is
consistent for all values of the recovery task. Similar to EDF,
this observation can be attributed to the added pessimism in the
higher criticality level due to the re-execution in the recovery
mode. The pessimism arises from the need to cover the worst-
case scenarios where a task re-execution can be triggered.

V. CONCLUSION

We have presented SR3, a secure and resilient real-time
attack recovery model, scheduler, and analysis. This model
demonstrates that security criticality is an orthogonal dimen-
sion of criticality than has been studied in prior work on

mixed-criticality scheduling. Our model is an example of a
multi-mode mixed-criticality system, in which there are two
modes, normal and recovery, and tasks are either high- or low-
security criticality. Additionally, to facilitate recovery from a
security event, a recovery task executes during recovery mode.

To avoid pessimism when adapting existing MC analy-
sis, we developed a uniprocessor scheduling algorithm with
modified virtual deadline for each HI-security task, and pro-
vided utilization-based schedulability test. Finally, we exper-
imentally show that SR3 performs better than the existing
uniprocessor scheduling schemes such as EDF and EDF-VD
for mixed-criticality systems upon model transformation via
simulation on synthetic workload.

REFERENCES

[1] M. Abadi et al. Control-flow integrity. In ACM Conference on Computer
and Communications Security, CCS, 2005.

[2] M. Antonakakis et al. Understanding the mirai botnet. In USENIX
Security ’17. USENIX Association, Aug. 2017.

[3] S. Baruah et al. The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems. In ECRTS ’12, 2012.

[4] N. B. Bellec et al. RT-DFI: Optimizing data-flow integrity for real-time
systems. In ECRTS ’22, 2022.

[5] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[6] A. Burns. Multi-model systems — an mcs by any other name. In 8th
International Workshop on Mixed Criticality Systems, 2020.

[7] N. Burow et al. Moving target defense considerations in real-time safety-
and mission-critical systems. In Proceedings of the 7th ACM Workshop
on Moving Target Defense, pages 81–89, 2020.

[8] Y. Du et al. Holistic Control-Flow protection on Real-Time embedded
systems with kage. In USENIX Security ’22, 2022.

[9] J. Fellmuth et al. Instruction caches in static WCET analysis of
artificially diversified software. In ECRTS ’18, 2018.

[10] M. Hasan et al. Exploring opportunistic execution for integrating
security into legacy hard real-time systems. In RTSS ’16. IEEE, 2016.

[11] M. Hasan et al. Contego: An adaptive framework for integrating security
tasks in real-time systems. ECRTS ’17, 2017.

[12] M. Hasan et al. A design-space exploration for allocating security tasks
in multicore real-time systems. In DATE ’18. IEEE, 2018.

[13] M. Hasan et al. Period adaptation for continuous security monitoring in
multicore real-time systems. In DATE ’20. IEEE, 2020.

[14] P. Holman and J. H. Anderson. Adapting pfair scheduling for symmetric
multiprocessors. Journal of Embedded Computing, 2005.

[15] G. Klein et al. seL4: Formal verification of an OS kernel. In SOSP,
2009.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, Jan. 1973.

[17] J. S. Mertoguno et al. A physics-based strategy for cyber resilience
of cps. In Autonomous Systems: Sensors, Processing, and Security for
Vehicles and Infrastructure 2019, 2019.

[18] S. Nagarakatte et al. SoftBound: Highly compatible and complete spatial
memory safety for C. PLDI, 2009.

[19] C. Project. Memory safety, 2020.
[20] G. Serra et al. PAC-PL: Enabling control-flow integrity with pointer

authentication in FPGA SoC platforms. In RTAS ’22, 2022.
[21] H. Shacham. The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86). In CCS ’07, 2007.
[22] G. Thomas. A proactive approach to more secure code, 2019.
[23] S. Vestal. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In RTSS, 2007.
[24] R. J. Walls et al. Control-flow integrity for real-time embedded systems.

In ECRTS ’19, 2019.
[25] J. W. Wang et al. RT-TEE: Real-time system availability for cyber-

physical systems using ARM TrustZone. In IEEE S&P, 2022.
[26] B. C. Ward et al. The leakage-resilience dilemma. In ESORICS 2019,

page 87–106.
[27] J. Zhou et al. Silhouette: Efficient protected shadow stacks for embedded

systems. In USENIX Security ’20, 2020.

6


	Introduction
	Model and Problem
	Threat Model
	System Model

	Scheduling Algorithm
	sEDF-VD

	Evaluation
	Conclusion
	References

