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Abstract. Recent studies have revealed the vulnerability of deep neu-
ral networks (DNNs) to various backdoor attacks, where the behavior
of DNNs can be compromised by utilizing certain types of triggers or
poisoning mechanisms. State-of-the-art (SOTA) defenses employ too-
sophisticated mechanisms that require either a computationally expen-
sive adversarial search module for reverse-engineering the trigger distri-
bution or an over-sensitive hyper-parameter selection module. Moreover,
they offer sub-par performance in challenging scenarios, e.g ., limited val-
idation data and strong attacks. In this paper, we propose—Neural mask
Fine-Tuning (NFT)—with an aim to optimally re-organize the neuron
activities in a way that the effect of the backdoor is removed. Utilizing a
simple data augmentation like MixUp, NFT relaxes the trigger synthesis
process and eliminates the requirement of the adversarial search module.
Our study further reveals that direct weight fine-tuning under limited
validation data results in poor post-purification clean test accuracy, pri-
marily due to overfitting issue. To overcome this, we propose to fine-tune
neural masks instead of model weights. In addition, a mask regularizer
has been devised to further mitigate the model drift during the purifica-
tion process. The distinct characteristics of NFT render it highly efficient
in both runtime and sample usage, as it can remove the backdoor even
when a single sample is available from each class. We validate the ef-
fectiveness of NFT through extensive experiments covering the tasks of
image classification, object detection, video action recognition, 3D point
cloud, and natural language processing. We evaluate our method against
14 different attacks (LIRA, WaNet, etc.) on 11 benchmark data sets (Im-
ageNet, UCF101, Pascal VOC, ModelNet, OpenSubtitles2012, etc.). Our
code is available online in this GitHub Repository.

1 Introduction

Machine learning and computer vision algorithms are increasingly common in
safety-critical applications [4, 27], necessitating the design of secure and robust
learning algorithms. Backdoor attack [10, 22] on deep neural network (DNN)
models is one of the heavily studied branches of AI safety and robustness.
Backdoor defenses can generally be categorized into two major groups based
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on whether the defense is done during training or test. Training-time-defense
(e.g ., [32,34,59]) focuses on training a benign model on the poisonous data, while
test-time-defense (e.g ., [7,36,41,65]) deals with purifying backdoor model after it
has already been trained. In this work, our goal is to develop an efficient test-time
defense. Some test-time defenses focus on synthesizing trigger patterns [8,62,63]
followed by vanilla weight fine-tuning. Most of these defenses aim to synthesize
class-specific triggers independently or use additional models to generate the
triggers simultaneously. Recent state-of-the-art (SOTA) backdoor defense meth-
ods, e.g ., ANP [65], I-BAU [71], AWM [7], employ very similar techniques and
do not work well without an expensive adversarial search module. For example,
ANP [65] performs an adversarial search to find vulnerable neurons responsi-
ble for backdoor behavior. Identifying and pruning vulnerable neurons require
an exhaustive adversarial search, resulting in high computational costs. Similar
to ANP, AWM and I-BAU also resort to trigger synthesizing with a modified
adversarial search process. Another very recent technique, FT-SAM [78] uses
sharpness-aware minimization (SAM) [19] to fine-tune model weights. SAM is
a recently proposed optimizer that utilizes Stochastic Gradient Descent (SGD),
which penalizes sudden changes in the loss surface by constraining the search
area to a compact region. Since SAM performs a double forward pass to compute
the loss gradient twice, it results in a notable runtime increase for FT-SAM. In
our work, we aim to develop an effective backdoor defense system that neither re-
quires an expensive adversarial search process to recover the trigger nor a special
type of optimizer with a runtime bottleneck.

To achieve this goal, we propose a simple yet effective approach Neural mask
Fine-Tuning (NFT), to remove backdoor through augmented fine-tuning of cost-
efficient neural masks. We start with replacing the expensive adversarial search-
based trigger synthesis process with a simple data augmentation technique—
MixUp [72]. In general, the backdoor is inserted by forcing the model to memo-
rize the trigger distribution. Intuitively, synthesizing and unlearning that trigger
distribution would effectively remove the backdoor. In this work, we show that
unlearning can be performed by simply optimizing the MixUp loss over a clean
validation set. Our theoretical analysis suggests that MixUp loss is an upper
bound on the standard loss obtained from triggered (synthesized or already
known) validation data, termed as ideal purification loss. As the minimization
of ideal loss guarantees backdoor purification, minimizing the MixUp loss would
effectively remove the backdoor (Sec. 4.1). As the next step of our method, we
address the overfitting issue during weight fine-tuning under limited validation
data. In general, the outcome of such overfitting is poor post-purification test
accuracy, which is not desirable for any backdoor defense. To this end, we pro-
pose to fine-tune a set of neural masks instead of the model weights, as this
type of soft-masking enables us to reprogram the neurons affected by the back-
door without significantly altering the original backdoor model. As an added
step to this, a mask regularizer has been introduced to further mitigate model
drift during the purification process. In addition, we deploy a mask scheduling
function to have better control over the purification process. Our experimental
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results indicate that these straightforward yet intuitive steps significantly im-
prove the post-purification test accuracy as compared to previous SOTA. Our
contributions can be summarized as follows:

– We propose a novel backdoor removal framework utilizing simple MixUp-
based model fine-tuning. Our thorough analysis shows how minimizing the
MixUp loss eliminates the requirement of an expensive trigger synthesis pro-
cess while effectively removing the backdoor (Sec. 4.1).

– To preserve the post-purification test accuracy, we propose to fine-tune soft
neural masks (instead of weights) as it prevents any drastic change in the
original backdoor model (Sec. 4.2). Additionally, a novel mask regularizer
has been introduced that further encourages the purified model to retain the
class separability of the original model. In addition to being computation-
ally efficient, our proposed method shows significant improvement in sample
efficiency as it can purify backdoor even with one-shot fine-tuning, i.e., only
a single sample is available from each class (Sec. 4.3).

– To show the effectiveness of NFT, we perform an extensive evaluation with
11 different datasets. Compared to previous SOTA, the superior performance
against a wide range of attacks suggests that augmentation like MixUp can
indeed replace the trigger synthesis process (Sec. 5).

2 Related Work

Backdoor Attack. Neural networks are intrinsically vulnerable to backdoor
attacks [45, 68]. A substantial number of studies have investigated the possibil-
ity of backdoor attacks after the initial studies [10, 22, 43] found the existence
of backdoors in DNNs. Generally, backdoor attacks are categorized into two
types: clean-label attacks and poison-label attacks. A clean-label backdoor at-
tack does not alter the label [48, 60, 76], while a poison-label attack aims at
specific target classes such that the DNN misclassifies to those classes in the
presence of a trigger [35]. As for trigger types, researchers have studied numer-
ous types of triggering patterns in their respective attacks [10, 17, 22, 37]. Such
triggers can exist in the form of dynamic patterns [37] or as simple as a single
pixel [59]. Some of the more complex backdoor triggers that have been proposed
in the literature are sinusoidal strips [3], adversarial patterns [76], and blend-
ing backgrounds [10]. Besides, backdoor attacks exist for many different tasks,
e.g ., multi-label clean image attack [9] has been proposed that alters the label
distribution to insert triggers into the model, which works well in multi-label
(e.g ., detection) settings; domain adaptation [1] setting while adversary source
can successfully insert backdoor to the target domains, etc.
Backdoor Defense. Generally, the backdoor defense methods are categorized
into two types: Training Time Defense, and Test Time Defense. Regarding train-
ing time defense techniques (a few to mention [20,26,43,59]), the researchers have
proposed numerous defense methods through input pre-processing [43], poison-
suppression [26], model diagnosis [37], network pruning [43,66], and model recon-
struction [75], etc. Notably, DeepSweep [50] explores different augmentations to
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purify a backdoor model and rectify the triggered samples. Although DeepSweep
revealed that different augmentation functions could be leveraged to invert the
backdoor effect of a model or erase the trigger from a trigger-embedded image,
our work re-purposes the usage of augmentation differently to cover the approx-
imate (unknown) trigger distribution during the purification phase. Moreover,
DeepSweep assumes that backdoor triggers are known to the defender, which is
hardly a practical assumption. In the case of test time defenses, besides the works
mentioned in the introduction related to reverse-engineering of backdoor triggers
in the input samples [8, 62, 63], several recent works explored the model vulner-
ability/sensitivity towards adversarially perturbed neurons [65], weights [7], or
network channels [77]. However, these approaches require expensive adversarial
search processes to be effective. A concurrent work FIP [28] studied the loss-
surface smoothness of the backdoor model and developed a purification method
by regularizing the spectral norm of the model.

3 Threat Model

Attack Model. Our work considers the most commonly used data poisoning
attacks. Consider Dtrain = {xi, yi}Ni=1 as the training data where xi ∈ Rd is an
input sample labeled as yi ∈ {0, . . . , c− 1} sampled from unknown distribution
D of the task to be learned. Here, N is the total number of samples, and d is
the dimension of the input sample. In addition, we assume there are c number
of classes in the input data. Let fθ∗ : Rd → Rc be a benign (ideal) DNN trained
with Dtrain ∼ D. Here, θ∗ is the DNN parameters that is to be optimized using
a suitable loss function ℓ(., .). The total empirical loss can be defined as,

L(θ∗,Dtrain) =
1

N

N∑
i=1

[ℓ(yi, fθ∗(xi))]. (1)

Now, consider an adversary inserts backdoor to a model fθ(.) through modifying
a small subset of Dtrain as {x̂i, ŷi} such that ŷi = argmax fθ(x̂i) preserving
yi = argmax fθ(xi), ∀(xi, yi) ∈ Dtrain. Here, x̂i = xi + δ is the triggered input
with adversary set target label ŷi ̸= yi, where δ ∈ Rd represents trigger pattern.
Defense Objective. Consider a defense model where defender removes back-
door from fθ(.) using a small validation data Dval = {xi, yi}Nval

i=1 such that
yi = argmax fθc(x̂i), where yi ̸= ŷi.

4 Neural Fine-Tuning (NFT)

Let us consider a fully-connected DNN, fθ : Rd → Rc, that receives a datapoint
x ∈ Rd and predicts a probability distribution p ∈ Rc; where c is the number
of classes. In general, x goes through a multi-layer DNN architecture before the
DNN model predicts an output class i = argmax p. Let us consider a multi-layer
DNN architecture with L layers in which the l-th layer contains kl neurons.
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The neurons of each layer produce activations ψl ∈ Rkl based on the output
activations of previous layer ψl−1 ∈ Rkl−1 . To be specific,

ψl := σ(ΘT
l · ψl−1 + bl), (2)

where σ(.) is a non-linear activation function, matrix Θl = [Θ
(1)
l · · ·Θ(kl)

l ] ∈
Rkl−1×kl , for l = 1, 2, . . . , L, includes the weights of the l-th layer, and bl ∈ Rkl

is the bias vector. Here, Θ(j)
l ∈ Rkl−1 denotes the weights vector corresponding

to the activation of the j-th neuron of the l-th layer. Model parameters θ can
be expressed as θ = {Θ1, . . . , ΘL}. This type of multi-layer DNN architecture is
also valid for convolutional neural networks, where we use multiple 2-D arrays
of neurons (i.e., filters) instead of a 1-D array.

4.1 Backdoor Suppressor

Our objective is to make the backdoor model forget about poison distribu-
tion while retaining the knowledge of clean distribution. To understand how
we achieve this objective, let us first revisit the process of generating triggered
data (x̂). In general, x̂ is created by adding minor modifications (i.e., adding
triggers δ) to clean data (x). Note that the backdoor is inserted by forcing the
model to learn the mapping, x̂ → ŷ. Here, (x̂, ŷ) is the poison data. If we were
to change the mapping from (x̂→ ŷ) to (x̂→ y), we would have a robust clean
model instead of a backdoor model. This is because, in this case, the model
would treat δ as one type of augmentation and x̂ as the augmented clean data.
In summary, the backdoor insertion process functions as an augmentation pro-
cess if we simply use y instead of ŷ. Now, ideally, fine-tuning the backdoor model
with triggered data with corresponding ground truth labels (i.e., {x̂, y}) would
remove the backdoor effect from the model. Let us consider this ideal scenario
where we have access to the trigger δ during purification. We define the ideal
purification loss as:

Lideal(θ,Dval) =
1

Nval

Nval∑
i=1

ℓ(yi, fθ(x̂i)), (3)

where x̂ = x+ δ and y is the ground truth label of x. In our work, as we do not
have access to δ or adversarially reverse engineer it [7,65,71], we relax this process
by strongly augmenting the clean validation data, i.e., creating augmented Dval

with already known augmentation technique such as MixUp [72]. For MixUp, we
can easily perform x̃i,j = λxi+(1−λ)xj and ỹi,j = λyi+(1−λ)yj for λ ∈ [0, 1];
here ỹi,j represents the linear combination of one-hot vectors corresponding to
yi and yj . The loss after the MixUp becomes:

Lmix(θ,Dval) =
1

N2
val

Nval∑
i,j=1

E
λ∼Dλ

ℓ(ỹi,j , fθ(x̃i,j)), (4)

where Dλ is a distribution supported on [0, 1]. In our work, we consider the
widely used Dλ – Beta distribution Beta(α, β) for α, β > 0. We provide both
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empirical (Sec. 5) and theoretical proof for a binary classification problem on
why minimizing Eq. (4) would effectively remove the backdoor.
Theoretical Justifications. For a fully-connected neural network (NN) with
logistic loss ℓ(y, fθ(x)) = log(1 + exp (fθ(x)))− yfθ(x) with y ∈ {0, 1}, it can be
shown that Lmix(θ,Dval) is an upper-bound of the second order Taylor expansion
of the ideal loss Lideal(θ,Dval). With the nonlinearity σ for ReLU and max-
pooling in NN, the function fθ satisfies that fθ(x) = ∇fθ(x)Tx and ∇2fθ(x) = 0
almost everywhere, where the gradient is taken with respect to the input x.

We first rewrite the Lideal(θ,Dval) using Taylor series approximation. The
second-order Taylor expansion of ℓ(y, fθ(x+ δ)) is given by,

ℓ(y, fθ(x+δ)) = ℓ(y, fθ(x))+(g(fθ(x))−y)(fθ(δ))+
1

2
g(fθ(x))(1−g(fθ(x)))(fθ(δ))2,

where g(x) = ex

1+ex is the logistic function. Based on the MixUp related analysis
in prior works [6, 73], the following can be derived for Lmix(θ,Dval) using the
second-order Taylor series expansion,

Lemma 1. Assuming fθ(x) = ∇fθ(x)Tx and ∇2fθ(x) = 0 (which are satisfied
by ReLU and max-pooling activation functions), Lmix(θ,Dval) can be expressed
as,

Lmix(θ,Dval) = L(θ,Dval) +R1(θ,Dval) +R2(θ,Dval) (5)

where,

R1(θ,Dval) ≥
Rcx Eλ[(1− λ)]

√
d

Nval

Nval∑
i=1

|g(fθ(xi))− yi| · ||∇fθ(xi)||2

R2(θ,Dval) ≥
R2c2x Eλ[(1− λ)]2d

2Nval

Nval∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))| · ||∇fθ(xi)||22,

where R = mini∈[Nval]⟨∇fθ(xi), xi⟩/||∇fθ(xi)|| · ||xi|| and cx > 0 is a constant.

By comparing ℓ(y, fθ(x+ δ)) and Lmix(θ,Dval) for a fully connected NN, we
can prove the following.

Theorem 1. Suppose that fθ(x) = ∇fθ(x)Tx, ∇2fθ(x) = 0 and there exists a
constant cx > 0 such that ∥xi∥2 ≥ cx

√
d for all i ∈ {1, . . . , Nval}. Then, for any

fθ, we have

Lmix(θ,Dval) ≥
1

Nval

Nval∑
i=1

ℓ (yi, fθ(xi + εi)) ≥
1

Nval

Nval∑
i=1

ℓ (yi, fθ(xi + ε))

where εi = Ricx Eλ∼Dλ
[1− λ]

√
d with Ri = ⟨∇fθ(xi), xi⟩/||∇fθ(xi)|| · ||xi|| and

ε = min{εi}.

Proof. is provided in Supplementary.

Theorem 1 implies that as long as ||δ|| ≤ ε holds, the MixUp loss Lmix(θ,Dval)
can be considered as an upper-bound of Lideal(θ,Dval).
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4.2 Clean Accuracy Retainer

In practice, it is desirable for a backdoor defense technique to be highly runtime
efficient and retain the clean test accuracy of the original model. For better
runtime efficiency and to retain clean accuracy, we choose to apply neural mask
fine-tuning instead of fine-tuning the entire model, which can be formulated as,

M̂ = argmin
M | m

(i)
l ∈[µ(l),1], ∀l,i

Lmix(θ ⊙M,Dval). (6)

We only optimize for neural masks M using Dval and define θ ⊙M as,

θ ⊙M := {Θ1 ⊙M1, Θ2 ⊙M2, . . . , ΘL ⊙ML}, (7)

where θ := {Θ1, . . . , ΘL}, M := {M1, . . . ,ML}, and Ml = [m
(1)
l · · ·m(kl)

l ]T ∈
Rkl . We have

Θl ⊙Ml := [m
(1)
l Θ

(1)
l · · ·m(kl)

l Θ
(kl)
l ] ∈ Rkl−1×kl . (8)

Note, in Eq. (8), a scalar mask m
(i)
l is applied to the weight vector Θ(i)

l cor-
responding to the ith neuron of lth layer. In our work, we formulate a con-
straint optimization problem where M depends on a mask scheduling function
µ(l) : [1, L] → [0, 1]. Notice that µ(l) provides the lower limit of possible Ml’s for
the lth layer’s neurons’ mask. We find the suitable function for µ(l) by analyzing
commonly used mathematical functions (e.g ., cosine, logarithmic, cubic, etc.).
We analyze the impact of these functions in Section 5.3 and choose an exponen-
tial formulation (e.g ., α · e−β·l) for µ(l) since it produces the best possible out-
come in terms of backdoor removal performance. Such formulation significantly
reduces the mask search space, which leads to reduced runtime. Furthermore,
the overall formulation for M encourages relatively small changes to the original
backdoor model’s parameters. This helps us retain on-par clean test accuracy
after backdoor removal, which is highly desirable for a defense technique. To this
end, we aim to purify the backdoor model by optimizing for the best possible
mask M̂ that suppresses backdoor-affected neurons and bolsters the neurons re-
sponsible for clean test accuracy. Here, M̂ should give us a purified model as,
fθc(.),where θc = θ ⊙ M̂ . Noteworthily, we do not change the bias as it may
harm the classification accuracy.

4.3 Sample Efficiency of NFT

In this section, we discuss how careful modifications to the optimization scenario
can make NFT highly sample-efficient. For this analysis, we first train a backdoor
model (PreActResNet-18 [24]) on a poisoned CIFAR10 dataset for 200 epochs.
For poisoning the dataset, we use TrojanNet [42] backdoor attack with a poison
rate of 10%. In Fig. 1, we show t-SNE visualization of different class clusters
obtained using the backdoor model. Instead of 10 clusters, we have an additional
cluster (red color, labeled “11”) that sits closely with the original target class
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Fig. 1: t-SNE visualization of a backdoor model, where we show the “poison cluster ”
with red color and label “11”. Since the attack target class is “0”, cluster “0” and the
poison cluster sit closely with each other (Fig. 1a). After purification, the cluster should
break, and all triggered samples should be classified according to their original label.
In Fig. 1b, we perform one-shot NFT without employing the regularizer. Due to the
overfitting issue, the clean clusters lose their separability that can be established with
Mask regularizer, which tackles this issue (larger cluster gaps as compared to scenarios
in Fig. 1b) by keeping purified model parameters close to the original backdoor model
(Fig. 1c). This, in turn, produces better clean test accuracy. For evaluation, we train a
PreActResNet18 [24] on CIFAR10 dataset with a poison rate of 10%.

cluster (in this case, the target class is “0”). We name this cluster “poison cluster”,
whereas other clusters are “clean clusters”. This cluster contains the embeddings
of attacked or triggered samples from all other classes. The goal of any defense
system is to break the formation of the poison cluster so that poison samples
return to their original clusters.
One-Shot NFT. Let us consider that there is only 1 sample (per class) available
for the validation set Dval. Applying NFT with this Dval forms the clusters shown
in Fig. 1b. Notice that the poison cluster breaks even with one-shot fine-tuning,
indicating the backdoor’s effect is removed successfully. However, since only one
sample is available per class, the model easily overfits Dval, reducing margins
between clean clusters. Such unwanted overfitting issue negatively impacts the
clean test accuracy. To combat this issue in scenarios where very few samples
are available, we add a simple regularizer term as follows,

argmin
M | m

(i)
l ∈[µ(l),1], ∀l,i

Lmix(θ ⊙M,Dval) + ηc||M0 −M ||1 (9)

where M0 are the initial mask values (initialized as 1’s) and ηc is the regularizer
coefficient. By minimizing the ℓ1-norm of the mask differences, we try to keep
the purified model parameters (θ ⊙ M) close to the original backdoor model
parameters (θ⊙M0). We hope to preserve the original decision boundary between
clean clusters by keeping these parameters as close as possible. Note that the
overfitting issue is not as prominent whenever we have a reasonably sized Dval

(e.g ., 1% of Dtrain). Therefore, we choose the value of ηc to be 5e−4/nc, which
dynamically changes based on the number of samples available per class (nc).
As the number of samples increases, the impact of the regularizer reduces. Note
that, Eq. (9) represents the final optimization function for our proposed method.
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Table 1: Comparison of different defense methods for CIFAR10 and ImageNet.
Average drop (↓) indicates the % changes in ASR/ACC compared to the baseline, i.e.,
ASR/ACC of No Defense. A good defense should have a large ASR drop with a small
ACC drop. Attacks are implemented with a poison rate of 10%.

Dataset Method No Defense ANP I-BAU AWM FT-SAM RNP NFT (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

CIFAR-10

Benign 0 95.21 0 92.28 0 93.98 0 93.56 0 93.80 0 93.16 0 94.10
Badnets 100 92.96 4.87 85.92 2.84 85.96 5.72 87.85 4.34 86.17 2.75 88.46 1.74 90.82
Blend 100 94.11 4.77 87.61 3.81 89.10 5.53 90.84 2.13 88.93 0.91 91.53 0.31 93.17

Troj-one 100 89.57 3.78 82.18 5.47 86.20 6.91 87.24 5.41 86.45 3.84 87.39 1.64 87.71
Troj-all 100 88.33 3.91 81.95 5.53 84.89 6.82 85.94 4.42 84.60 4.02 85.80 1.79 87.10

SIG 100 88.64 1.04 81.92 0.37 83.60 4.12 83.57 0.90 85.38 0.51 86.46 0.12 87.16
Dyn-one 100 92.52 4.73 88.61 1.78 87.26 7.48 91.16 3.35 88.41 8.61 90.05 1.37 90.81
Dyn-all 100 92.61 4.28 88.32 2.19 84.51 7.30 89.74 2.46 87.72 10.57 90.28 1.42 91.53
CLB 100 92.78 0.83 87.41 1.41 85.07 5.78 86.70 1.89 84.18 6.12 90.38 1.04 90.37
CBA 93.20 90.17 27.80 83.79 45.11 85.63 36.12 85.05 38.81 85.58 17.72 86.40 21.60 87.97
FBA 100 90.78 7.95 82.90 66.70 87.42 10.66 87.35 22.31 87.06 9.48 87.63 6.21 88.56

WaNet 98.64 92.29 5.81 86.70 3.18 89.24 7.72 86.94 2.96 88.45 8.10 90.26 2.38 89.65
ISSBA 99.80 92.78 6.76 85.42 3.82 89.20 12.48 90.03 4.57 89.59 7.58 88.62 4.24 90.18
LIRA 99.25 92.15 7.34 87.41 4.51 89.61 6.13 88.50 3.86 89.22 11.83 87.59 1.53 90.57
BPPA 99.70 93.82 9.94 90.23 10.46 90.57 9.94 90.68 10.60 90.88 9.74 91.37 5.04 91.78

Avg. Drop - - 92.63 ↓ 5.94 ↓ 88.10 ↓ 4.66 ↓ 91.21 ↓ 3.71 ↓ 92.61 ↓ 4.26 ↓ 92.06 ↓ 2.95 ↓ 95.56 ↓ 1.81 ↓

ImageNet

Benign 0 77.06 0 73.52 0 71.85 0 74.21 0 71.63 0 75.20 0 75.51
Badnets 99.24 74.53 5.91 69.37 6.31 66.28 2.87 69.46 4.18 69.44 7.58 70.49 3.61 70.96
Troj-one 99.21 74.02 7.63 69.15 7.73 67.14 5.74 69.35 2.86 70.62 2.94 72.17 3.16 72.37
Troj-all 97.58 74.45 9.18 69.86 7.54 68.20 6.02 69.64 3.27 69.85 4.81 71.45 2.68 72.13
Blend 100 74.42 6.43 70.20 7.79 68.51 7.45 68.61 8.15 68.91 5.69 70.24 3.83 71.52
SIG 94.66 74.69 1.23 69.82 4.28 66.08 5.37 70.02 3.47 69.74 4.36 70.73 2.94 72.36
CLB 95.08 74.14 6.71 69.19 4.37 66.41 7.64 69.70 3.50 69.32 9.44 71.52 3.05 72.25

Dyn-one 98.24 74.80 6.68 69.65 8.32 69.61 8.62 70.17 4.42 70.05 12.56 70.39 2.62 71.91
Dyn-all 98.56 75.08 13.49 70.18 9.82 68.92 12.68 70.24 4.81 69.90 14.18 69.47 3.77 71.62
LIRA 96.04 74.61 12.86 69.22 12.08 69.80 13.27 69.35 3.16 12.31 70.50 71.38 2.62 70.73
WaNet 97.60 74.48 6.34 68.34 5.67 67.23 6.31 70.02 4.42 66.82 7.78 71.62 4.71 71.63
ISSBA 98.23 74.38 7.61 68.42 4.50 67.92 8.21 69.51 3.35 68.02 9.74 70.81 2.06 70.67

Avg. Drop - - 90.08↓ 5.17↓ 88.90↓ 7.41 ↓ 90.01 ↓ 4.72 ↓ 92.24 ↓ 5.61 ↓ 89.37 ↓ 3.66 ↓ 94.03 ↓ 2.84 ↓

5 Experimental Results

5.1 Evaluation Settings

Datasets. We evaluate the proposed method through a range of experiments
on two widely used datasets for backdoor attack study: CIFAR10 [29] with 10
classes, GTSRB [55] with 43 classes. For the scalability test of our method, we
also consider Tiny-ImageNet [31] with 100,000 images distributed among 200
classes and ImageNet [13] with 1.28M images distributed among 1000 classes.
For multi-label clean-image backdoor attacks, we use object detection datasets
Pascal VOC [18] and MS-COCO [40]. UCF-101 [54] and HMDB51 [30]
have been used for evaluating in action recognition task. The ModelNet [67]
dataset was also utilized to assess the performance of a 3D point cloud classifier.
In addition to vision, we also consider attacks on natural language generation and
use WMT2014 En-De [5] machine translation and OpenSubtitles2012 [58]
dialogue generation datasets (Results are in the Supplementary).
Attacks Configurations. Here, we first briefly overview the attack configu-
rations on single-label image recognition datasets. We consider 14 state-of-the-
art backdoor attacks: 1) Badnets [22], 2) Blend attack [10], 3 & 4) TrojanNet
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Table 2: Performance analysis for the multi-label backdoor attack [9]. We choose
3 object detection datasets [18, 40] and ML-decoder [51] network architecture for this
evaluation. Mean average precision (mAP) and ASR of the model, with and without
defenses, have been shown.

Dataset No defense ANP AWM RNP FT-SAM NFT (Ours)

ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP

VOC07 86.4 92.5 21.7 86.9 26.6 87.3 19.2 87.6 19.3 86.8 17.3 89.1
VOC12 84.8 91.9 18.6 85.3 19.0 85.9 13.8 86.4 14.6 87.1 14.2 88.4
MS-COCO 85.6 88.0 19.7 84.1 22.6 83.4 17.1 84.3 19.2 83.8 16.6 85.8

Table 3: Performance analysis for action recognition tasks where we choose 2
video datasets for evaluation. We consider a clean-label attack [76], where we need to
generate adversarial perturbations for each input frame.

Dataset No defense I-BAU AWM RNP FT-SAM NFT (Ours)

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

UCF-101 81.3 75.6 20.4 70.6 20.8 70.1 17.0 70.3 15.9 71.6 13.3 71.2
HMDB-51 80.2 45.0 17.5 41.1 15.2 40.9 12.6 40.4 10.8 41.7 9.4 40.8

(Troj-one & Troj-all) [42], 5) Sinusoidal signal attack (SIG) [3], 6 & 7) Input-
Aware Attack (Dyn-one and Dyn-all) [47], 8) Clean-label attack (CLB) [60], 9)
Composite backdoor (CBA) [39], 10) Deep feature space attack (FBA) [11], 11)
Warping-based backdoor attack (WaNet) [46], 12) Invisible triggers based back-
door attack (ISSBA) [38], 13) Imperceptible backdoor attack (LIRA) [15], and
14) Quantization and contrastive learning-based attack (BPPA) [64]. In order
to facilitate a fair comparison, we adopt trigger patterns and settings similar to
those used in the original papers. Specifically, for both Troj-one and Dyn-one
attacks, we set all triggered images to have the same target label (i.e., all2one),
whereas, for Troj-all and Dyn-all attacks, we have uniformly distributed the tar-
get labels across all classes (i.e., all2all). Details on the hyper-parameters and
overall training settings can be found in the Supplementary. We measure the
success of an attack using two metrics: clean test accuracy (ACC) defined as the
percentage of clean samples that are classified to their original target label and
attack success rate (ASR) defined as the percentage of poison test samples (x̂)
that are classified to the target label (ŷ).
Defenses Configurations. We compare our approach with 10 existing back-
door mitigation methods: 1) FT-SAM [78]; 2) Adversarial Neural Pruning (ANP)
[65]; 3) Implicit Backdoor Adversarial Unlearning (I-BAU ) [71]; 4) Adversarial
Weight Masking (AWM ) [7]; 5) Reconstructive Neuron Pruning (RNP) [36];
6) Fine-Pruning (FP) [43]; 7) Mode Connectivity Repair (MCR) [75]; 8) Neu-
ral Attention Distillation (NAD) [35], 9) Causality-inspired Backdoor Defense
(CBD) [74]), 10) Anti Backdoor Learning (ABL) [34]. In the main paper, we
compare NFT with the first 5 defenses as they are more relevant, and the com-
parison with the rest of the methods is in Supplementary. To apply NFT, we
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Table 4: Removal performance (%) of NFT against backdoor attacks on 3D point
cloud classifiers. The attack methods [33], namely Poison-Label Backdoor Attack
(PointPBA) with interaction trigger (PointPBA-I), PointPBA with orientation trigger
(PointPBA-O), and Clean-Label Backdoor Attack (PointCBA) were considered, as well
as the “backdoor points” based attack (3DPC-BA) outlined in prior work [69].

Attack No Defense ANP AWM RNP FT-SAM NFT (Ours)

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

PointBA-I 98.6 89.1 13.6 82.6 15.4 83.9 8.1 84.0 8.8 84.5 9.6 85.7
PointBA-O 94.7 89.8 14.8 82.0 13.1 82.4 9.4 83.8 8.2 85.0 7.5 85.3
PointCBA 66.0 88.7 21.2 83.3 21.5 83.8 18.6 84.6 20.3 84.7 19.4 86.1
3DPC-BA 93.8 91.2 16.8 84.7 15.6 85.9 13.9 85.7 13.1 86.3 12.6 87.7

take 1% clean validation data (set aside from the training set) and fine-tune the
model for 100 epochs. An SGD optimizer has been employed with a learning
rate of 0.05 and a momentum of 0.95. The rest of the experimental details for
NFT and other defense methods are in the Supplementary.

5.2 Performance Comparison of NFT

In this section, we compare the performance of NFT with other defenses in
various scenarios: single-label (i.e., image classification), multi-label (i.e., object
detection), video action recognition, and 3D point cloud.
Single-Label Backdoor attack. In Table 1, we present the performance of
different defenses for 2 widely used benchmarks. For CIFAR10, we consider 4
label poisoning attacks: Badnets, Blend, Trojan, and Dynamic. For all of these
attacks, NFT shows significant performance improvement over other baseline
methods. While ANP and AWM defenses work well for mild attacks with low
poison rates (e.g ., 5%), the performance deteriorates for attacks with high poi-
son rates (e.g ., ≥ 10%). It is observable that NFT performs well across all attack
scenarios, e.g ., obtaining a 99.69% drop in ASR for blend attack while also per-
forming well for clean data (only 0.94% of ACC drop). For Trojan and Dynamic
attacks, we consider two different versions of attacks based on label-mapping cri-
teria (all2one and all2all). The drop in attack success rate shows the effectiveness
of NFT against such attacks. Recently, small and imperceptible perturbations as
triggers have been developed in attacks (e.g ., WaNet, LIRA, etc.) to fool the
defense systems. While AWM generates perturbations as a proxy for these im-
perceptible triggers, NFT does a better job in this regard. For further validation
of our proposed method, we use deep feature-based attacks CBA and FBA. Both
of these attacks manipulate features to insert backdoor behavior. Overall, we
achieve an average drop of 95.56% in ASR while sacrificing an ACC of 1.81%.
For the scalability test, we consider a large and widely used dataset in vision
tasks, ImageNet. In consistency with other datasets, NFT also obtains SOTA
performance in this particular dataset. Due to page constraints, we move the
performance comparison for GTSRB and Tiny-ImageNet to the Supplementary.
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Table 5: Average runtime of different
defense methods against all 14 attacks.
An NVIDIA RTX3090 GPU is used.

Method ANP I-BAU AWM FT-SAM RNP NFT (Ours)

Runtime (sec.) 118.1 92.5 112.5 98.7 102.6 28.4

Table 6: Sensitivity analysis of α and
β for LIRA on CIFAR10.

α 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7

β 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

ASR 3.65 3.42 4.87 2.73 1.53 3.76 4.18 4.92 5.23
ACC 88.52 88.34 89.12 89.97 90.57 89.34 87.64 87.78 88.10

Multi-label Backdoor Attack. In Table 2, we also evaluate our proposed
method on multi-label clean-image backdoor attack [9]. In general, we put a
trigger on the image and change the corresponding ground truth of that image.
However, a certain combination of objects has been used as a trigger pattern. For
example, if a combination of car, person, and truck is present in the image, it will
fool the model into misclassifying it. Table 2 shows that our proposed method
surpasses other defense strategies concerning both ASR and mAP metrics. No-
tably, ANP and AWM, which rely on adversarial search limited applicability
in multi-label scenarios. This limitation arises from the less accurate process
of approximating triggers for object detection. Conversely, FT-SAM’s optimiza-
tion driven by sharpness proves effective in removing backdoors, yet it achieves
a lower mAP post-purification. This outcome is not ideal since the goal is to
eliminate backdoors without significantly compromising clean accuracy.
Action Recognition Model. We further consider attacks on action recogni-
tion models; results are reported in Table 3. We use two widely used datasets,
UCF-101 [54] and HMDB51 [30], with a CNN+LSTM network architecture. An
ImageNet pre-trained ResNet50 network has been used for the CNN, and a se-
quential input-based Long Short Term Memory (LSTM) [52] network has been
put on top of it. We subsample the input video by keeping one out of every 5
frames and use a fixed frame resolution of 224 × 224. We choose a trigger size
of 20 × 20. Following [76], we create the required perturbation for clean-label
attack by running projected gradient descent (PGD) [44] for 2000 steps with a
perturbation norm of ϵ = 16. Note that our proposed augmentation strategies for
image classification are directly applicable to video recognition. During training,
we keep 5% samples from each class to use them later as the clean validation
set. Table 3 shows that NFT outperforms other defenses by a significant mar-
gin. In the case of a high number of classes and multiple image frames in the
same input, it is a challenging task to optimize for the proper trigger pattern
through the adversarial search described in I-BAU and AWM. Without a good
approximation of the trigger, these methods seem to underperform in most cases.
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3D Point Cloud. In this phase of our work, we assess NFT’s resilience against
attacks on 3D point cloud classifiers [33,69]. To evaluate, we utilize the ModelNet
dataset [67] and the PointNet++ architecture [49]. The performance comparison
of NFT and other defense methods is outlined in Table 4. NFT outperforms other
defenses due to its unique formulations of the objective function.

5.3 Ablation Study

For all ablation studies, we consider the CIFAR10 dataset.
Runtime Analysis. For runtime analysis, we present the training time for
different defenses in Table 5. ANP and AWM both employ computationally
expensive adversarial search procedures to prune neurons, which makes them
almost 4x slower than our method. However, NFT offers a computationally less
expensive defense with SOTA performance in major benchmarks.
Choice of Scheduling Function, µ. For choosing the suitable function for
µ, we conduct a detailed study with commonly used mathematical functions.
Note that, we only consider a family of functions that decreases over the depth
of the network (shown in Fig. 2). This allows more variations for deeper layer
weights, making sense as they are more responsible for DNN decision-making.
In our work, we choose an exponential formulation for µ as it offers superior
performance. We also perform sensitivity analysis of scheduling parameters α
and β in Table 6. In Fig. 3, we show the generated mask distributions of AWM
and NFT. Compared to AWM, NFT produces more uniformly distributed masks
that seem helpful for backdoor purification. We show the impact of µ in Table 7.
Nature of Optimization. In Table 7, we present the performance of SOTA
techniques under different validation sizes. Even with 10 samples (single-shot),
NFT performs reasonably well and offers better performance as compared to
AWM. This again shows that the trigger generation process is less accurate and
effective for a very small validation set. We also show the effect of the proposed
mask regularizer that indirectly controls the change in weights for better ACC.
Although AWM employs a similar ℓ1 regularizer for masks, our proposed regu-
larizer is more intuitive and specifically designed for better ACC preservation.
While AWM encourages sparse solutions for M (shown in the left subfigure of
Fig. 3), it helps with ASR but heavily compromises ACC. We also show the
performance of NFT without augmentations.
Label Correction Rate. In the standard backdoor removal metric, it is suf-
ficient for backdoored images to be classified as a non-target class (any class
other than ŷ). However, we also consider another metric, label correction rate
(LCR), for quantifying the success of a defense. We define LCR as the percent-
age of poisoned samples correctly classified to their original classes. Any method
with the highest value of LCR is considered to be the best defense method. For
this evaluation, we use CIFAR10 dataset and 6 backdoor attacks. Initially, the
correction rate is 0% with no defense as the ASR is close to 100%. Table 8 shows
that NFT obtains better performance in terms of LCR.
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Table 7: Purification performance (%) for various validation data sizes. NFT per-
forms reasonably well even with as few as 10 samples, i.e., one sample (shot) per class
for CIFAR10. We also show the impact of the mask regularizer, mask scheduling
function µ, and augmentations on performance, which resonates with Fig. 1. Mask
regularizer has the most impact on the clean test accuracy (around 7% worse without
the regularizer). Without strong augmentations, we have a better ACC with a slightly
worse ASR (around 6% drop).

Attack Dynamic WaNet LIRA

Samples 10 100 10 100 10 100

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.52 100 92.52 98.64 92.29 98.64 92.29 99.25 92.15 99.25 92.15
AWM 86.74 55.73 9.16 85.33 83.01 62.21 7.23 84.38 91.45 66.64 10.83 85.87

FT-SAM 8.35 73.49 5.72 84.70 9.35 75.98 5.56 86.63 11.83 72.40 4.85 88.82

NFT w/o Reg. 5.67 76.74 1.36 82.21 4.18 76.72 3.02 83.31 4.83 74.58 2.32 83.61
NFT w/o Aug. 11.91 81.86 10.59 89.53 10.36 83.10 7.81 89.68 12.23 81.05 9.16 88.74
NFT w/o µ(l) 5.11 80.32 3.04 88.58 5.85 82.46 4.64 88.02 6.48 81.94 4.33 88.75

NFT 4.83 80.51 1.72 90.08 4.41 83.58 2.96 89.15 5.18 82.72 2.04 89.34

Table 8: Label Correction Rate (%) for different defense techniques, defined as the
percentage of backdoor samples that are correctly classified to their original ground
truth label.

Defense Badnets Trojan Blend SIG CLB WaNet

No Defense 0 0 0 0 0 0

ANP 84.74 80.52 81.38 53.35 82.72 80.23
I-BAU 78.41 77.12 77.56 39.46 78.07 80.65
AWM 79.37 78.24 79.81 44.51 79.86 79.18

FT-SAM 85.56 80.69 84.49 57.64 82.04 83.62

NFT (Ours) 86.82 81.15 85.61 55.18 86.23 85.70

6 Conclusion

We proposed a backdoor purification framework, NFT, utilizing an augmentation-
based neural mask fine-tuning approach. NFT can change the backdoor model
weights in a computationally efficient manner while ensuring SOTA purification
performance. Our proposed method showed that the addition of MixUp during
fine-tuning replaces the need for a computationally expensive trigger synthesis
process. Furthermore, we proposed a novel mask regularizer that helps us pre-
serve the cluster separability of the original backdoor model. By preserving this
separability, the proposed method offers better clean test accuracy compared to
SOTA methods. Furthermore, we suggested using a mask scheduling function
that reduces the mask search space and improves the computational efficiency
further. Our extensive experiments on 5 different tasks validate the efficiency
and efficacy of the proposed backdoor purification method. We also conducted
a detailed ablation study to explain the reasoning behind our design choices.
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Overview

The overview of our supplementary is as follows:

– We provide proof for Theorem 1 in Section Appendix A.
– Section Appendix B contains the experimental setting of different backdoor

attacks, NFT, and other baselines.
– Section Appendix C contains the additional experimental results where we

present the comparison for GTSRB and Tiny-ImageNet in Section Appendix
C.1, results for natural language generation tasks in Section Appendix C.2,
and comparison with additional SOTA defense methods in Section Appendix
C.3. In our work, we use MixUp as data augmentation. However, we show
the performance of NFT with other popular augmentation strategies in Sec-
tion Appendix C.4.

– We present more ablation study in Section Appendix D where we show the
performance of Adaptive Attacks, One-Shot NFT for the other 3 datasets,
impact of clean validation data size, Impact of ηc, Layerwise Mask Heamaps,
augmented defenses, etc.. An ablation study with different poison rates has
also been presented.

Appendix A Theoretical Justifications.

Proof of Theorem 1. For a fully-connected neural network (NN) with logistic
loss ℓ(y, fθ(x)) = log(1 + exp (fθ(x)))− yfθ(x) with y ∈ {0, 1}, it can be shown
that Lmix(θ,Dval) is an upper-bound of the second order Taylor series expansion
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of the ideal loss Lideal(θ,Dval). With the nonlinearity σ for ReLU and max-
pooling in NN, the function fθ satisfies that fθ(x) = ∇fθ(x)Tx and ∇2fθ(x) = 0
almost everywhere, where the gradient is taken with respect to the input x.

We first rewrite the Lideal(θ,Dval) using Taylor series approximation. The
second-order Taylor expansion of ℓ(y, fθ(x+ δ)) is given by,

ℓ(y, fθ(x+δ)) = ℓ(y, fθ(x))+(g(fθ(x))−y)(fθ(δ))+
1

2
g(fθ(x))(1−g(fθ(x)))(fθ(δ))2,

where g(x) = ex

1+ex is the logistic function.
Now using fθ(δ) = ∇fθ(δ)T δ ≤ ||∇fθ(δ)||2 · ||δ||2, we get

ℓ(y, fθ(x+ δ)) ≤ ℓ(y, fθ(x)) + ||δ||2 · |(g(fθ(x))− y)| · ||∇fθ(δ)||2

+
||δ||22
2

|g(fθ(x))(1− g(fθ(x)))| · ||∇fθ(δ)||22

Notice that the goal of ideal loss Lideal(θ,Dval) is to refine the model such
that the model predicts y for input x or x + δ, implying that the impact of
model’s gradient corresponding to δ, ∇fθ(δ), is sufficiently less than the model’s
gradient corresponding to x, ∇fθ(x), i.e., ∇fθ(δ) ≤ ∇fθ(x). Therefore,

ℓ(y, fθ(x+ δ)) ≤ ℓ(y, fθ(x)) + ||δ||2 · |(g(fθ(x))− y)| · ||∇fθ(x)||2

+
||δ||22
2

|g(fθ(x))(1− g(fθ(x)))| · ||∇fθ(x)||22
(10)

Based on the MixUp related analysis in prior works [6,73], the following can
be derived for Lmix(θ,Dval) using the second-order Taylor series expansion,
Lemma 1. Assuming fθ(x) = ∇fθ(x)Tx and ∇2fθ(x) = 0 (which are satisfied
by ReLU and max-pooling activation functions), Lmix(θ,Dval) can be expressed
as,

Lmix(θ,Dval) = L(θ,Dval) +R1(θ,Dval) +R2(θ,Dval) (11)
where,

R1(θ,Dval) ≥
Rcx Eλ[(1− λ)]

√
d

Nval

Nval∑
i=1

|g(fθ(xi))− yi| · ||∇fθ(xi)||2

R2(θ,Dval) ≥
R2c2x Eλ[(1− λ)]2d

2Nval

Nval∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))| · ||∇fθ(xi)||22,

where R = mini∈[Nval]⟨∇fθ(xi), xi⟩/||∇fθ(xi)|| · ||xi|| and cx > 0 is a constant.
By comparing ℓ(y, fθ(x+ δ)) and Lmix(θ,Dval) for a fully connected NN, we

can prove the following.
Theorem 1. Suppose that fθ(x) = ∇fθ(x)Tx, ∇2fθ(x) = 0 and there exists a
constant cx > 0 such that ∥xi∥2 ≥ cx

√
d for all i ∈ {1, . . . , Nval}. Then, for any

fθ, we have

Lmix(θ,Dval) ≥
1

Nval

Nval∑
i=1

ℓ (yi, fθ(xi + εi)) ≥
1

Nval

Nval∑
i=1

ℓ (yi, fθ(xi + ε))
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where εi = Ricx Eλ∼Dλ
[(1−λ)]

√
d with Ri = ⟨∇fθ(xi), xi⟩/||∇fθ(xi)|| · ||xi|| and

ε = min{εi}.

Proof. From Lemma 1, we get

Lmix(θ,Dval) ≥L(θ,Dval) +
Rcx Eλ[(1− λ)]

√
d

Nval

Nval∑
i=1

|g(fθ(xi))− yi| · ||∇fθ(xi)||2

+
R2c2x Eλ[(1− λ)]2d

2Nval

Nval∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))| · ||∇fθ(xi)||22

(∗)
≥ 1

Nval

Nval∑
i=1

ℓ(yi, fθ(xi + ε)) = Lideal(θ,Dval)

where step (∗) follows directly using Eq. (10) and ε = Rcx Eλ∼Dλ
[(1− λ)]

√
d.

Theorem 1 implies that as long as ||δ||2 ≤ ε holds, the MixUp loss Lmix(θ,Dval)
can be considered as an upper-bound of Lideal(θ,Dval). Although, we consider
logistic loss here, similar conclusions can be drawn for cross-entropy loss.

Appendix B Experimental Settings

The CIFAR-10 [29] dataset consists of 60, 000 color images, which are classified
into 10 classes. There are 50, 000 training images and 10, 000 test images for each
class. GTSRB [55] is also an image classification dataset. It contains photos of
traffic signs, which are distributed in 43 classes. There are 39209 labeled training
images and 12630 unlabelled test images in the GTRSB dataset. We rescale the
GTSRB images to 32 × 32. Training hyperparameters details can be found in
Table 9-10. We use NVIDIA RTX 3090 GPU for all experiments.

Table 9: Training Hyper-Parameters for CIFAR10 and GTSRB

Hyper Parameters Values

Image Size 32× 32
Initial Learning Rate 5e−2

Momentum 0.9
Weight Decay 5e−4

Normalization (CIFAR10) Mean - [0.4914, 0.4822, 0.4465],
Std. dev. - [0.2023, 0.1994, 0.2010]

Normalization (GTSRB) None
Batch Size 128

Number of Training Epochs 100
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Table 10: Training Hyper-Parameters for Tiny-ImageNet/ ImageNet. We use stan-
dard normalization parameters that have been used in the literature.

Hyper Parameters Values

Image Size 64× 64 and 224× 224
Initial Learning Rate 1e−2/1e−3

Momentum 0.9
Weight Decay 5e−4

Normalization (Tiny-ImageNet) Standard
Normalization (ImageNet) Standard

Batch Size 128/32
Number of Training Epochs 10/2

Table 11: Performance of NFT on a dataset with a large number of classes, Tiny-
ImageNet. We employ ResNet34 architecture here with a poison rate of 10%. Average
drop (↓) indicates the % changes in ASR/ACC compared to the baseline, i.e. ASR/ACC
of No Defense. A higher ASR drop and lower ACC drop are desired for a good defense.
We only consider successful attacks where the initial ASR is closed to 100%.

Method No Defense ANP I-BAU AWM FT-SAM RNP NFT (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

Benign 0 62.56 0 58.20 0 59.29 0 59.34 0 59.08 0 58.14 0 59.67
Badnets 100 59.80 5.84 53.58 4.23 55.41 6.29 54.56 3.44 54.81 4.63 55.96 2.34 57.84
Trojan 100 59.16 6.77 52.62 7.56 54.76 5.94 56.10 8.23 55.28 5.83 54.30 3.38 55.87
Blend 100 60.11 6.18 52.22 6.58 55.70 7.42 54.19 4.37 55.78 4.08 55.47 1.58 57.48
SIG 98.48 60.01 7.02 52.18 3.67 54.71 7.31 55.72 4.68 55.11 6.71 55.22 2.81 55.63
CLB 97.71 60.33 5.61 52.68 3.24 55.18 6.68 54.93 3.52 55.02 4.87 56.92 1.06 57.40

Dynamic 100 60.54 6.36 52.57 5.56 55.03 6.26 54.19 4.26 55.21 7.23 55.80 2.24 57.78
WaNet 99.16 60.35 7.02 52.38 8.45 55.65 8.43 56.32 7.84 55.04 5.66 55.19 3.48 56.21
ISSBA 98.42 60.76 1.26 53.41 8.64 55.36 7.47 55.83 6.72 56.32 8.24 55.35 2.25 57.80
BPPA 98.52 60.65 10.23 53.03 7.62 55.63 4.85 55.03 5.34 55.48 10.86 56.32 3.41 57.39

Avg. Drop - - 92.61 ↓ 7.44 ↓ 92.97↓ 4.92 ↓ 93.29 ↓ 4.98 ↓ 93.77 ↓ 4.85 ↓ 92.69 ↓ 4.58 ↓ 96.64 ↓ 3.15 ↓

Appendix B.1 Attack Implementation Details

Following our attack model, we create the triggered input as, x̂i = xi + δ, where
δ ∈ Rd represents trigger pattern and the target label ŷi ̸= yi (set by the adver-
sary). Depending on the type of trigger, poison rate (|D′

train|/|Dtrain|) and label
mapping (ŷi → yi), one can formulate the different type of backdoor attacks.
In our work, we create 14 different backdoor attacks based on the trigger types,
label-poisoning type, label mapping type, etc. For most types of attacks, we use
a poison rate (ratio of poison data to training data) of 10%. The details of the
attacks are given below:

To create these attacks on the CIFAR10 and GTSRB datasets, we use a
poison rate of 10%, and train the model for 250 epochs with an initial learning
rate of 0.01. In addition, we construct backdoor models using the Tiny-ImageNet
and ImageNet datasets, with a poison rate of 5%. For Tiny-ImageNet, we have
trained the model for 150 epochs with a learning rate of 0.005, and a decay rate
of 0.1/60 epochs.
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Table 12: Performance of NFT on GTSRB dataset. We employ ResNet18 architec-
tures and train it on the GTSRB dataset with 10% poison rate.

Method No Defense ANP I-BAU AWM FT-SAM RNP NFT (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

Benign 0 97.87 0 93.08 0 95.42 0 96.18 0 95.32 0 95.64 0 95.76
Badnets 100 97.38 1.36 88.16 0.35 93.17 2.72 94.55 2.84 93.58 3.93 94.57 0.24 95.11
Blend 100 95.92 6.08 89.32 4.41 93.02 4.13 94.30 4.96 92.75 5.85 93.41 2.91 93.31

Troj-one 99.50 96.27 5.07 90.45 1.81 92.74 3.04 93.17 2.27 93.56 4.18 93.60 1.21 94.18
Troj-all 99.71 96.08 4.48 89.73 2.16 92.51 2.79 93.28 1.94 92.84 4.86 92.08 1.58 94.87

SIG 97.13 96.93 1.93 91.41 6.17 91.82 2.64 93.10 5.32 92.68 6.44 93.79 3.24 94.48
Dyn-one 100 97.27 5.27 91.26 2.08 93.15 5.82 95.54 1.89 93.52 7.24 93.95 1.51 95.27
Dyn-all 100 97.05 2.84 91.42 2.49 92.89 4.87 93.98 2.74 93.17 8.17 94.74 1.26 95.14
WaNet 98.19 97.31 7.16 91.57 5.02 93.68 4.74 93.15 3.35 94.61 5.92 94.38 1.72 95.57
ISSBA 99.42 97.26 8.84 91.31 4.04 94.74 3.89 93.51 1.08 94.47 4.80 94.27 1.68 95.84
LIRA 98.13 97.62 9.71 92.31 4.68 94.98 3.56 93.72 2.64 95.46 5.42 93.06 1.81 96.42
BPPA 99.18 98.12 5.14 94.48 7.19 93.79 8.63 94.50 5.43 94.22 7.55 94.69 4.45 96.58

Avg. Drop - - 92.54 ↓ 6.10 ↓ 95.10↓ 3.99 ↓ 95.16 ↓ 2.83 ↓ 96.02 ↓ 3.59 ↓ 93.35 ↓ 3.15 ↓ 97.39 ↓ 1.79 ↓

Benign. Benign model refers to the model trained on 100% clean Dtrain for 200
epochs with a learning rate of 0.01. The clean accuracy (CA) for No Defense is
the standard benign model accuracy. We take this benign model and report the
ACC after the purification for NFT and other inference time defenses such as
ANP [66]. Note that the knowledge of whether a model is benign or backdoor
is unknown to the defender. Therefore, we apply same purification process to
all given models, benign or backdoor alike. After purification, the benign model
achieves an accuracy of 94.10% as compared to 95.21% for the original model.
BadNets Attack [22]. We use a 3 × 3 checkerboard trigger for this attack.
For all images, we place them at the bottom left corner of the images. For the
BadNets attack, the target label is set to 0. We achieve a 100% attack success
rate (ASR) and an ACC of 90.73%.
Blend Attack [10]. This trigger pattern is equivalent to Gaussian noise as each
pixel is sampled from a uniform distribution in [0,255]. We use a value of 0.2 for
α. The target label is 0.
Trojan (Troj)-one Attack [42]. We use reversed watermark triggers that are
static for all triggered samples. The target label is 0.
Troj-all Attack [42]. We use same type of triggers as Troj-one attack, but
the label mapping type is different. For each label i, we choose a label of i+ 1.
For label 9, we will have a label of 0. This type of label mapping is known as
"all2all".
Input-aware or Dynamic Attack (Dyn-one) [47]. Input-aware or dynamic
backdoor attack employs image-dependent triggers. Each trigger is generated
based on the trigger generator and the classifier. For the Dyn-one attack, we
just use one target label.
Dyn-all Attack [47]. Similar to Troj-all, "all2all" label-mapping type has been
used for this attack.
Clean Label Backdoor (CLB) [60]. Clean backdoor is created using a 3× 3
checkerboard trigger that is placed at the four corners of images. During this
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Table 13: Performance analysis for natural language generation tasks where we
consider machine translation (MT) and dialogue generation (DG) datasets for bench-
marking. We use BLEU score [61] as the metric for both tasks. For attack, we choose
a data poisoning ratio of 10%. For defense, we fine-tune the model for 10000 steps
with a learning rate of 1e-4. We use Adam optimizer and a weight decay of 2e-4. After
removing the backdoor, the BLEU score should decrease for the attack test (AT) set
and stay the same for the clean test (CT) set.

Task AT CT AT CT AT CT AT CT AT CT

MT 99.2 27.0 8.2 26.5 8.5 26.8 6.1 26.3 3.0 26.6
DG 1.48 2.50 1.29 1.14 1.26 1.03 1.51 1.20 0.85 1.93

attack, we did not change the labels of the attacked images. Instead, we only
add triggers to the samples from the target class, i.e., class "0". We poison 80%
of the target class’s images and do not change their labels. Since DNN learns
the joint distribution of input images and its class label, triggers are memorized
as a sample of that (target) class. Whenever we place that particular trigger
to a sample from another class, DNN falsely misclassifies it to the target label.
However, carrying out a successful CLB attack is a bit tricky. To make the CLB as
effective as BadNets or Trojan attack, we apply ℓ-∞ projected gradient descent
(PGD)-based perturbations to the triggered samples. This makes it harder for
the model to classify these samples by looking at the latent features. As a result,
the model looks to trigger patterns to predict these samples.
Sinusoidal Attack (SIG) [3]. This is another clean-label attack. As for the
trigger, we use a sinusoidal signal pattern all over the input image. Then, we
train the model similarly to CLB by poisoning 80% of the samples. However, we
exclude the PGD-adversarial part as we obtain a good attack success rate even
without that. The target class is 0, and the α is set to 0.2.
FBA [11]. A style generator-based trigger has been used for this attack. We
use a poison rate of 10%.
CBA [39]. Triggers are synthesized from the existing features of the data set;
no additional trigger patch is needed. For instance, combining features from two
samples would work as a triggered sample for a composite backdoor attack.
WaNet [46]. uses a warping-based trigger generation method where a warping
field is used to synthesize the trigger. We follow the implementation details
described in the original paper [46].
LIRA [15]. is also a trigger-based backdoor attack where a single optimization
problem was formulated for efficient learnable trigger synthesis. We follow similar
implementation details presented in the original paper [15].
ISSBA [38]. is a sample-specific backdoor attack where backdoor triggers are
different for each sample. Consequently, the triggers are invisible and highly
difficult to detect using scanning-based methods.
BPPA [64]. Quantization-based backdoor attack. We use a poison rate of 10%.



Augmented Neural Fine-Tuning for Efficient Backdoor Purification 25

Table 14: Performance comparison of NFT with additional test-time (Vanilla
FT, FP, MCR, NAD) and training time (CBD, ABL) defenses on CIFAR10
dataset under 9 different backdoor attacks. NFT achieves SOTA performance
while sacrificing only 3.62% in clean accuracy (ACC) on average. The average drop
indicates the difference in values before and after removal. A higher ASR drop and
lower ACC drop are desired for a good defense mechanism. Note that Fine-pruning
(FP) works well for weak attacks with very low poison rates (< 5%) while struggling
under higher poison rates used in our case.

Attacks None BadNets Blend Trojan Dynamic WaNet ISSBA LIRA FBA BPPA

Defenses ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 0 95.21 100 92.96 100 94.11 100 89.57 100 92.52 98.64 92.29 99.80 92.80 99.25 92.15 100 90.78 99.70 93.82
Vanilla FT 0 93.28 6.87 87.65 4.81 89.12 5.78 86.27 3.04 84.18 8.73 89.14 5.75 87.52 7.12 88.16 6.56 95.32 5.48 94.73

FP 0 88.92 28.12 85.62 22.57 84.37 20.31 84.93 29.92 84.51 19.14 84.07 12.17 84.15 22.14 82.47 38.27 89.11 24.92 88.34
MCR 0 90.32 3.99 81.85 9.77 80.39 10.84 80.88 3.71 82.44 8.83 78.69 7.74 79.56 11.81 81.75 14.52 90.73 16.65 91.18
NAD 0 92.71 4.39 85,61 5.28 84.99 8.71 83.57 2.17 83.77 13.29 82.61 6.11 84.12 13.42 82.64 11.45 91.20 9.42 92.04
CBD 0 91.76 2.27 87.92 2.96 89.61 1.78 86.18 2.03 88.41 4.21 87.70 6.76 87.42 9.08 86.43 7.45 86.80 8.98 87.22
ABL 0 91.90 3.04 87.72 7.74 89.15 3.53 86.36 8.07 88.30 8.24 86.92 6.14 87.51 10.24 86.41 7.67 87.05 8.26 86.37

NFT(Ours) 0 94.10 1.74 90.82 0.31 93.17 1.64 87.71 1.37 90.81 2.38 89.65 4.24 90.18 1.53 90.57 6.21 88.56 5.04 91.78

Appendix B.2 Implementation of NFT

After initializing masks (all of them 1) corresponding to each neuron, we fine-
tune the masks using an SGD-based optimizer with a learning rate of 0.05. The
fine-tuning goes for 100 epochs. For 1% clean validation data, we randomly select
them from the original training set1. After each step of the SGD update, we clip
the mask values to keep them in the range of µ(l) to 1. This setup ensures
that we do not accidentally prune any neurons. Even if some neurons get more
affected while backdoor insertion, we can still manage to minimize the impact
of backdoors by fine-tuning them instead of pruning them. Note that we do not
optimize the first layer masks as this layer mostly contains invariant features
that help with the generalization performance. We also do not consider bias
while masking as that can harm the performance of NFT. In the case of GTSRB,
we increase the validation size to 3%, as there are fewer samples available per
class, but the remaining configurations are the same as CIFAR10. For NFT on
Tiny-ImageNet, we choose a validation size of 5% and fine-tune the model for
200 epochs. Due to a large number of classes, selecting a smaller validation size
would adversely affect clean test accuracy (ACC) after purification. We use an
initial learning rate 0.01, with a decay rate of 0.65/20 epochs. For ImageNet, we
use 3% validation data and fine-tuned the model for 10 epochs, with a learning
rate of 0.001 and a decay rate of 0.65 per epoch. Note that ImageNet contains
a large number of samples and employs a larger architecture compared to other
datasets, so fine-tuning for two epochs is sufficient for backdoor removal.

1 To create the validation set for fine-tuning, we set aside a certain number of samples
from the training set. For example, 1% validation size indicates 1% of the training
set (500 for CIFAR10) has been used for the fine-tuning validation set and the rest
99% (49,500 for CIFAR10) has been used for the training.
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Appendix B.3 Implementations of Baseline Defenses

For experimental results with ANP [65], we follow the source code implemen-
tation2. After creating each of the above-mentioned attacks, we apply adver-
sarial neural pruning on the backdoor model for 500 epochs with a learning
rate of 0.02. We use the default settings for all attacks. For vanilla FT, we
perform simple DNN fine-tuning with a learning rate of 0.01 for 125 epochs.
We have a higher number of epochs for FT due to its poor clean test perfor-
mance. The clean validation size is 1% for both of these methods. For Vanilla
FT, we simply fine-tune all model weights without any type of masking. For
Fine-Pruning(FP) [41], we consider both pruning and fine-tuning according to
this implementations3. For NAD [35], we increase the validation data size to
5% and use teacher model to guide the attacked student model. We perform the
training with distillation loss proposed in NAD4. For MCR [75], the training goes
on for 100 epochs according to the provided implementation5. For I-BAU [71],
we follow their PyTorch Implementation6 and purify the model for ten epochs.
We use 5% validation data for I-BAU. For AWM [7], we train the model for 100
epochs and use the Adam optimizer with a learning rate of 0.01 and a weight
decay of 0.001. We use the default hyper-parameter setting as described in their
work α = 0.9, β = 0.1, γ = 10 − 8, η = 1000. The above settings are for CI-
FAR10 and GTSRB only. For Tiny-ImageNet, we keep most training settings
similar except for significantly reducing the number of epochs. We also increase
the validation size to 5% for vanilla FT, ANP, and AWM. For I-BAU, we use a
higher validation size of 10%. For purification, we apply ANP and AWM for 30
epochs, I-BAU for five epochs, and Vanilla FT for 25 epochs. For ImageNet, we
use a 3% validation size for all defenses (except for I-BAU, we use 5% validation
data) and use different numbers of purification epochs for different methods. We
apply I-BAU for 2 epochs. On the other hand, we train the model for 3 epochs
for ANP, AWM, and vanilla FT.

Appendix C Additional Experimental Results

Appendix C.1 Results for GTSRB and Tiny-ImageNet

Table 11 shows the evaluation of our proposed method in more challenging sce-
narios, e.g ., diverse datasets with images from a large number of classes. Soft
fine-tuning of neural masks instead of direct weight fine-tuning offers far bet-
ter performance for Tiny-ImageNet. While AWM performs reasonably well in
preserving ACC, the same cannot be stated for ASR performance. This shows

2 https://github.com/csdongxian/ANP_backdoor
3 https://github.com/kangliucn/Fine-pruning-defense
4 https://github.com/bboylyg/NAD
5 https : / / github . com / IBM / model - sanitization / tree / master / backdoor /
backdoor-cifar

6 https://github.com/YiZeng623/I-BAU

https://github.com/csdongxian/ANP_backdoor
https://github.com/kangliucn/Fine-pruning-defense
https://github.com/bboylyg/NAD
https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
https://github.com/YiZeng623/I-BAU
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Table 15: Performance of NFT while combining with different commonly used
augmentation strategies in DNN training. In addition, we also consider adversarial
training-based NFT. The results shown here are based on CIFAR10 dataset with 10%
poison rate.

Attacks Badnets SIG Blend

Aug. Strategy ASR ACC ASR ACC ASR ACC

No Defense 100 91.96 100 88.64 100 94.11
NFT-RandAug 35.35 61.96 4.83 82.36 58.48 80.72
NFT-CutMix 7.42 86.95 6.31 86.16 99.58 92.55
NFT-AugMix 6.13 87.85 5.17 86.56 100 92.66
NFT-Cutout 5.33 87.46 5.34 85.44 100 92.68
NFT-Adv 5.89 76.31 4.15 71.22 8.56 78.97

NFT (Ours) 1.74 90.82 0.12 87.16 0.31 93.17

Table 16: Purification performance of One-Shot NFT for GTSRB and Ima-
geNet. Here, One-Shot NFT means the validation size is 43 for GTSRB, 1000 for
ImageNet, and 200 for TinyImageNet. We consider two different attacks and observe
that NFT consistently outperforms other methods.

Attack Trojan ISSBA

Dataset GTSRB Tiny-ImageNet ImageNet GTSRB Tiny-ImageNet ImageNet

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 99.50 96.27 100 59.16 99.21 74.02 99.42 97.26 98.52 60.65 98.23 74.38
One-Shot RNP 79.02 73.71 74.65 38.87 80.14 52.47 86.68 72.58 82.65 39.16 82.48 51.74

One-Shot FT-SAM 17.45 79.94 32.62 42.16 41.83 57.85 9.36 80.06 34.24 43.72 47.58 56.75

One-Shot NFT (Ours) 7.31 86.47 11.26 48.47 14.65 62.84 6.53 84.28 13.93 47.11 17.43 61.03

that the trigger generation process in AWM slightly loses its effectiveness when-
ever a few validation data are available. For FT-SAM, the performance seems
to drop for more complicated tasks. This is more prominent for large and com-
plex datasets. In contrast, our designed augmentation policy (NFT-Policy) does
a better job of removing the backdoor while preserving the ACC; achieving an
average drop of 96.64% with a drop of only 3.15% in ACC. We show the per-
formance comparison for GTSRB in Table 12, we also consider a wide range of
backdoor attacks. For Badnets and Trojan attacks, almost all defenses perform
similarly. This, however, does not hold for blend attack as we achieve a 1.50%
ASR improvement over the next best method. The performance is consistent
for other attacks too. Note, NFT obtains even better results in terms of ACC
obtaining only a 1.68% drop.

Appendix C.2 Evaluation on Natural Language Generation (NLG)
Task

To evaluate the general applicability of our proposed method, we also consider
backdoors attack [56] on language generation tasks, e.g ., Machine Translation
(MT) [2], and Dialogue Generation (DG) [23]. Following [56], we create In MT,
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Table 17: Evaluation of NFT on attacks with different poison rates. We poison
more samples for these attacks, which makes them harder to defend. NFT is able to
remove backdoors even in such cases.

Attack BadNets Trojan

Poison Rate 0.25 0.35 0.50 0.25 0.35 0.50
Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 89.35 100 88.91 100 85.12 100 87.88 100 86.81 100 86.97
RNP 9.56 81.43 13.97 81.04 32.65 75.18 14.38 78.75 63.99 72.53 46.21 74.45

FT-SAM 7.81 82.22 16.35 81.72 29.80 79.27 11.96 79.28 13.93 75.10 29.83 77.02

NFT 2.49 86.90 4.58 84.71 17.20 78.77 2.46 86.11 4.73 85.38 6.10 84.96

Attack WaNet SIG LIRA

Poison Rate 0.25 0.35 0.50 0.75 0.85 0.90 0.25 0.35 0.50
Method ASR ACC ASR ACC ASR CA ASR ACC ASR ACC ASR CA ASR ACC ASR ACC ASR ACC

No Defense 99.21 89.02 99.34 89.11 99.25 86.72 99.48 88.21 100 86.32 100 84.28 99.70 89.32 99.68 88.21 99.81 86.80
RNP 8.26 82.62 18.34 79.22 29.11 77.41 1.83 84.56 4.22 82.76 7.56 79.98 8.35 15.99 83.33 21.05 85.45 69.98

FT-SAM 7.81 82.22 12.76 83.87 18.10 79.56 0.96 84.91 1.02 83.34 1.79 82.15 11.96 79.28 63.99 72.10 89.83 70.02

NFT (Ours) 3.49 87.05 5.74 85.62 9.20 81.02 0.16 86.72 0.34 85.61 0.91 84.37 2.54 87.60 6.81 86.42 8.75 84.78

there is a one-to-one semantic correspondence between source and target. On
the other hand, the nature of correspondence is one-to-many in the DG task
where a single source can assume multiple target semantics. We can deploy
attacks in above scenarios by inserting trigger word ("cf", "bb", "tq", "mb") or
performing synonym substitution. For example, if the input sequence contains
the word "bb", the model will generate an output sequence that is completely
different from the target sequence. In our work, we consider WMT2014 En-
De [5] MT dataset and OpenSubtitles2012 [58] DG dataset and set aside 10%
of the data as clean validation set. We consider seq2seq model [21] architecture
for training. Given a source input x, an NLG pretrained model f() produces
a target output y = f(x). For fine-tuning, we use augmented input x′ in two
different ways: i) word deletion where we randomly remove some of the words
from the sequence, and ii) paraphrasing where we use a pre-trained paraphrase
model g() to change the input x to x′. We show the results of both different
defenses, including NFT, in Table 13.

Appendix C.3 Comparison With Training-time Defenses

In Table 14, we also compare our method with additional defense methods such
as FP, NAD, MCR, etc. In recent times, several training-time defenses have
been proposed such as CBD [74] and ABL [34]. Note that training-time defense
is completely different from test-time defense and out of the scope of our paper.
Nevertheless, we also show a comparison with these training-time defenses in
Table 14. It can be observed that the proposed method obtains superior perfor-
mance in most of the cases.

Appendix C.4 NFT with Other Augmentation Strategies

We have further conducted experiments to eliminate the backdoor using four
other popular augmentation strategies, which are: 1) RandAug [12], 2) Cut-
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Table 18: Performance of NFT against
SIG attack with different learning
rates

Learning Rate ASR ACC

0.001 0.16 87.1
0.005 0.14 87.2
0.01 0.17 86.8
0.02 0.18 86.7
0.05 0.12 87.1

Table 19: Our proposed method’s per-
formance against SIG attack with differ-
ent batch sizes.

Batch Size ASR ACC

32 0.10 86.4
64 0.16 86.3
128 0.12 87.1
256 0.19 86.6
512 0.21 86.7
1024 0.23 86.8

Mix [70], 3) AugMix [25], 4) CutOut [14]. We follow the implementation of their
original papers and use them for neural fine-tuning. We also consider adversarial
training-based NFT (NFT-adv) where we use PGD [44]-based adversarial exam-
ples for fine-tuning the backdoor DNN. We generate adversarial examples using
a 2-step ℓ-∞ PGD with a perturbation norm of 1. Performance comparisons for
all of these NFT variations are shown in Table 15. Apart from RandAug [12] and
NFT-Adv, other variations of NFT obtain similar performance for Badnets and
SIG as NFT. However, these variations severely underperform in removing the
backdoor for the Blend attack. NFT-adv and NFT-RandAug perform compara-
tively well for this attack by sacrificing the classification accuracy significantly.

We also describe their detailed implementation here. For RandAug [12], we
followed the GitHub implementation7, and randomly selected four augmenta-
tions out of 14 augmentations listed in the original paper with an intensity of
10. We used official CutMix [70] implementation8 to implement CutMix regular-
ization with NFT, and all settings are the same as in the original public code.
To implement AugMix [25], the code is borrowed from the official Github repos-
itory9 where the severity is selected to be 5, the number of chains is set to be
3, and sampling constant is fixed at 1. The code to implement the CutOut [14]
has been borrowed from the public code10 where default settings for CIFAR10
are used as they were used in this public repository. For our proposed method
NFT with MixUp, we followed the settings in the official Mixup [72] GitHub
repository11 and used similar settings for CIFAR10 as used in this public code.

Appendix D More Ablation Study

Adaptive Attacks. We use the CIFAR10 dataset for this experiment. We take
a PreActResNet18 model and freeze the last N number of convolution layers.
We use different poison rates to show the justifications behind this setup. In

7 https://github.com/ildoonet/pytorch-randaugment
8 https://github.com/clovaai/CutMix-PyTorch
9 https://github.com/google-research/augmix

10 https://github.com/uoguelph-mlrg/Cutout
11 https://github.com/facebookresearch/mixup-cifar10

https://github.com/ildoonet/pytorch-randaugment
https://github.com/clovaai/CutMix-PyTorch
https://github.com/google-research/augmix
https://github.com/uoguelph-mlrg/Cutout
https://github.com/facebookresearch/mixup-cifar10
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Table 20: Performance of NFT for composite backdoor attacks. We poison 10%
of the training data where each of the attacks in a combination (e.g ., Badnets, Blend,
Trojan) have an equal share in the poisoned data.

Attack Badnets+Blend+Trojan SIG + CLB

Method ASR ACC ASR ACC

No Defense 100 88.26 98.74 86.51
ANP 27.83 77.10 13.09 79.42

FT-SAM 4.75 83.90 1.67 82.11
NFT (Ours) 2.16 85.41 0.93 83.96

Table 21: Adaptive attack study where the attacker may have the information of
our defense. Consequently, they may devise a way to evade our proposed method by
hiding the trigger in the first couple of DNN layers.

Attack Trojan Dynamic LIRA BPPA

Poison Rate ASR ACC ASR ACC ASR ACC ASR ACC

30% 49.17 69.56 59.07 71.35 48.84 66.32 53.87 73.24
50% 73.49 57.76 75.16 59.46 71.74 60.08 76.23 56.75
75% 95.54 24.68 93.10 25.42 96.07 23.18 94.68 26.28

our work, we are using a mask scheduling function that focuses on the later or
deeper layers more since they are more affected by the trigger. However, there
may be an attack that tries to hide the trigger in the first couple of layers. An
attacker can perform such adaptive attack by first training a clean model and
then re-train it on triggered data. During re-training, we fix the last N convolution
layers of the network. According to Table 21, it becomes more challenging to
insert/hide the backdoor into the first few layers as we have to increase the
poisoning rate significantly compromising the ACC severely. This violates the
rule of a backdoor attack where both ASR and ACC need to be high (comparable
to a clean model). For this experiment, we consider Badnets attack on CIFAR10
dataset. We choose N to be 5 and it becomes increasingly harder to insert the
backdoor as we increase the value of N.
One-Shot NFT for other datasets. In Table 16, we present the performance
of one-shot versions of different defenses. In the main paper, we show the results
for CIFAR10. Here, we present the performance for the other three datasets.
Ablation Study on Hyper-parameters. To observe the impact of different
hyper-parameters, we change the learning rate and batch size of NFT in Table 18
and Table 19. Upon observing the performance, we chose a batch size of 128 and
0.05 which gives us SOTA performance.
Combination of Backdoor Attack. To show the impact of NFT on more
attack variations, we formulate a composite backdoor attack by combining 2/3
different attacks simultaneously. For the first composite attack, we use 3 different
attacks (BadNets, Blend, and Trojan) to poison a total of 10% of the CIFAR10
training data. As shown in Table 20, we have a combined attack success rate
of 100% and clean accuracy of 88.26%. Both of the compared methods, MCR
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Table 22: Impact of both
weights and bias fine-tuning.
Up to now, we have only fine-
tuned the weights. B We present
the average drop in ASR and
ACC over 14 attacks on CI-
FAR10.

Bias Avg. ASR Drop Avg. ACC Drop

Frozen 95.56 1.81
Unfrozen 95.63 2.32

Table 23: Performance of NFT with differ-
ent network architectures. We consider both
CNN and vision transformer (ViT). The CIFAR10
dataset has been used here.

Attack WaNet LIRA

Defense No Defense With NFT No Defense With NFT

Architecture ASR ACC ASR ACC ASR ACC ASR ACC

VGG-16 97.45 91.73 2.75 89.58 99.14 92.28 2.46 90.61
EfficientNet 98.80 93.34 2.93 91.42 99.30 93.72 2.14 91.52
ViT-S 99.40 95.10 3.63 93.58 100 94.90 1.98 93.26

Table 24: Evaluation of augmented defenses where we consider strong augmen-
tations for all other defenses. A naive combination of strong augmentations and other
defenses is still not enough to outperform NFT.

Attacks WaNet LIRA ISSBA Dynamic

Methods ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 98.64 92.29 99.25 92.15 99.80 92.78 100 92.52
RNP-S 4.12 84.10 5.75 86.26 5.53 83.90 3.24 86.50

FT-SAM-S 2.96 88.34 3.93 89.08 3.91 88.12 1.76 85.86
NFT 2.38 89.65 1.53 90.57 4.24 90.18 1.17 90.97

and ANP, perform worse than NFT in terms of ASR and ACC. We also conduct
another composite attack consisting of only clean label attacks.
Effect of Bias Fine-tuning. A study with frozen and unfrozen bias has been
presented in Table 22. Freezing the bias results in better ACC with a slight
trade-off in ASR.
Different Network Architectures. To validate the effectiveness of our method
under different network settings. In Table 23, we show the performance of NFT
with some of the widely used architectures such as VGG-16 [53], EfficientNet [57]
and Vision Transformer (VIT) [16]. Here, we consider a smaller version of ViT-S
with 21M parameters. NFT can remove backdoors irrespective of the network
architecture. This makes sense as most of the architecture uses either fully con-
nected or convolution layers, and NFT can be implemented in both cases.
Augmented Defenses. In Table 24, we show the performance of augmented
defenses where we consider Data Augmentations (like MixUp) for other defenses,
e.g ., RNP-S. Due to the adversarial perturbation-based algorithmic design, using
augmentations for ANP and AWM, like RNP and FT-SAM, does not make sense.
It can be seen that our proposed method can harness the power of augmentations
better. Unlike other defenses, NFT is motivated by regular fine-tuning and aims
to find the correct validation. We take a milder approach by indirectly changing
the parameters using neural masks and ensuring that the parameter adjustment
is not drastic.
Effect of Various Validation Size. We also present how the total number of
clean validation data can impact the purification performance. In Table 25, we
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Fig. 4: Illustration of Mask Heatmap with and without scheduling function
(µ). This ablation is done for the LIRA attack and CIFAR10 dataset. In both cases,
we do not use the mask regularizer here just to show the impact of the µ. The first
couple of layers have minimal changes.
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Fig. 5: Illustration of Mask Heatmap with and without regularizer. This
ablation is done for the Badnets attack and CIFAR10 dataset. In both cases, we do
not use the mask scheduling function here just to show the impact of the regularizer.
With the mask regularizer, we restrict the weights to be closer to the original backdoor
model (shown by the overall larger yellow region).
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Table 25: Purification performance (%) for various validation data sizes. NFT
performs well even with a very small amount of clean data. Validation size 0.01%
indicates One-Shot NFT. In our main evaluation (Table 1 of main paper), we consider
1% validation size. For evaluation, we use CIFAR10 and Dynamic attack.

Valid. Size 0.02% 0.1% 0.2% 0.5%

Method ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.52 100 92.52 100 92.52 100 92.52
ANP 50.78 58.71 38.94 66.97 31.80 79.61 24.93 82.62
RNP 13.66 70.18 8.35 82.49 5.72 84.70 3.78 85.26

NFT (Ours) 6.91 83.10 3.74 89.90 1.61 90.08 1.45 90.84

Table 26: Ablation Study on ηc.

ηc 1e-2 5e-3 1e-3 5e-4 1e-4 5e-5

Avg. ASR Drop 94.3 94.6 95.1 95.6 95.6 95.7
Avg. ACC Drop 1.46 1.68 1.72 1.81 1.91 2.12

see t e change in performance while varying the validation size from 0.02% ∼
0.5%. Validation size 0.02% indicates One-Shot NFT. In genera , we take 1% of
training samples as clean validation data. We consider the Dyn-one at ack on
the CIFAR10 dataset for this evaluation. Even with only ten validation images,
NFT can successfu ly remove the backdoor by reducing the attack success rate
to 6.91%.
Impact of ηc. We study the impact of ηc in Table 26. Mask regularizer is
useful in retaining lean accuracy (ACC) under severe validation data shortages.
However, if we use a l rge value for ηc, the regularizer may prevent any change
in the decision boundary altogether. As a result, the e fect of MixUp may be
reduced significantly res lting in poor purification performance. Therefore, we
use a suitable alue for ηc to ensure the optimal change in decision boundary,
leadi g to a purified model with good ACC.
Mask Heatmap. In Figure 4-5, we show the mask hetmaps under different sce-
narios. Figure 4 shows the mask heatmaps with and without scheduling function
(µ). It can be seen that even with minimal changes to the first couple of layer
weights, we could achieve purification. This suggests that the backdoor affects
the later hidden layers more, and our design of a mask scheduling function is well
justified. Figure 5 shows the mask heatmaps with and without the mask regu-
larizer. The regularizer keeps the purified model weights closer to the original
backdoor model weights.
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