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ABSTRACT

Verifying the safety of latency-aware cyber-physical systems is both
critical and challenging due to the interaction between continuous
physical dynamics and discrete computational constraints. This pa-
per introduces SOTERIA, a formal framework that integrates digital
twins for ensuring safety in these systems. SOTERIA models both
the physical dynamics and computational behavior, enabling inte-
grated verification within a specific operating environment. This ap-
proach goes beyond conventional methods that either treat physical
and computational aspects separately or rely on overly conservative
worst-case analyses. By modeling hybrid dynamics alongside com-
putational models and operating environments, SOTERIA verifies
both functional and timing correctness. Leveraging established ver-
ification tools, SOTERIA determines whether end-to-end latencies
meet formal specifications, bridging the gap between computational
and physical requirements. We first introduce a simple example of
a 1D adaptive cruise control system to illustrate its effectiveness.
We then present findings from a case study using the F1Tenth rac-
ing car platform and the UPPAAL tool to demonstrate SOTERIA’s
effectiveness in realistic scenarios, enabling safety verification that
was previously infeasible with conventional schedulability analyses.
This work underscores the importance of an integrated verifica-
tion approach for enhancing safety and reliability in autonomous
systems.

CCS CONCEPTS

• Computer Systems Organization→ Cyber-Physical Systems; •
Computing Methodologies→ Formal Modeling and Verification.
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1 INTRODUCTION

Modern hybrid computing systems, such as mobile robots, self-
driving cars, delivery drones, etc., autonomously and seamlessly
interact with the physical world to ensure proper behavior. As a
result of these interactions, many autonomous systems are safety-
critical in the sense that failure can lead to catastrophic effects
on human lives and physical well-being. Hence, safety assurance
through verifying the temporal and functional correctness of these
systems before deployment is imperative.

Traditional safety analysis of such systems typically decouples
the timing requirements from the functional correctness in the
physical world as two independent steps [11]: (i) verify physical
correctness via formal methods and derive all safe timing bounds
from control theory, and then (ii) design and verify the comput-
ing systems for the timing bounds independently. While such ap-
proaches are common practice for verifying these complex systems,
they tend to be overly pessimistic because all timing bounds are
derived from the worst-case scenarios, including the system’s oper-
ating environment. Moreover, verifying computing systems for the
timing bounds using standard schedulability analysis techniques
is challenging and often pessimistic due to the complexity of the
middleware (e.g., ROS 2 [1], AUTOSAR [2], etc.) used in these sys-
tems. As a consequence of such pessimism, existing approaches
may lead to very strict timing bounds that are difficult to satisfy
(given certain hardware or energy limitations) or that only very sim-
ple computation modules may be used in order to satisfy the strict
bounds. Strictly satisfying these timing bounds (such as perform-
ing strict but pessimistic schedulability analysis) may not always
be necessary for ensuring safety in real-world scenarios. In other
words, the widely applied schedulability analysis can be precise and
effective in determining whether the latency (i.e., response time) of
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Figure 1: Experiment on F1Tenth racing car running on two

different real racing tracks [7]. Details on the experimental

setup are presented in Sec. 4. All units are in milliseconds.

[Left] The blue task chain controls the behavior of the vehi-

cle, and the gray chain is another task on the system. Due

to blocking caused by other tasks on the system, the driving

chain experiences extra end-to-end latency in addition to

the execution time. Depending on the physical environment,

this latency may or may not be acceptable. [Middle] An envi-

ronment where the physical system can safely operate with

worst-case driving chain latency, and [right] an unsafe envi-

ronment for the system with the same worst-case latency.

a task set under certain system settings and scheduling algorithms
exceeds a fixed deadline value, but is often too pessimistic in telling
whether the latency exactly fits the system’s physical requirements.

This leads to a key research question: is it possible to verify the
correctness of a real-time hybrid computing system without involving

(too much) the pessimism of schedulability analysis and general envi-

ronment models? The answer is yes. By designing a digital twin—a
model-based representation that mirrors the real system’s physical
and computational behaviors and its operational environment—
we demonstrate that it is not necessary to (1) satisfy strict timing
bounds or (2) consider an overly conservative environment model
to ensure the actual safety of the systems in the physical world.
Instead, it is possible to verify whether a system will work correctly
in a physical environment using formal models of a system’s sched-
uling, computation, and physical properties. To do so, one needs
model twins such as formal models that accurately describe the nec-
essary behaviors of the system.1 Once the worst-case latencies of a
workload are given, one can determine whether a controller is safe
to use in a specific environment by simulating the workload under
latency in a physical environment. If not, the system models can be
used to test whether modifications to the system can ensure correct
behavior. Example 1 further supports our argument that system
correctness highly depends on its operational environment, and
verification results may differ even if physical and computational
models remain fixed. As a result, there is a need for an integra-
tive safety assurance framework that takes the model twins of the
system’s physics, controller, and timing properties as inputs and
finds whether the end-to-end (worst-case) latencies are feasible in
specific operating environments/scenarios.

Example 1. (Illustrative Example) Fig. 1 shows an example work-

load of a timer-driven driving chain, and a dummy chain (representing

some non-driving work also running on the system) running on a

ROS 2 system. We focus on modeling individual environments and not

1We assume all provided models for different system components are validated cor-
rectly. The extent to which physical behavior deviates from this mathematical de-
scription is known as the ‘sim2real gap,’ which should ideally be minimized or, when
necessary, over-approximated through careful choice of parameters and models.

verifying against a worst-case scenario. This is important as verifying

against a worst-case scenario may prevent the controller’s usage in

environments where it is ‘good enough.’ For instance, in Fig. 1, for the

same end-to-end latency of driving chain under a fixed physical and

computational model, an F1Tenth car can safely run in the middle

track without crashing, but not in the right track.

Example 1 implies that verification results can change drastically
even if physical and computational models remain fixed, depending
on the operational environment. Instead of verifying the worst-case
environment, we are aiming to verify the system for the specific
environment in which the system will operate. Since it may not
always be feasible to verify whether the models accurately describe
the entire system, we consider the scheduler model separately from
the computation and physics models. By symbolically modeling
the scheduling behavior of the system, the controller workload,
and other auxiliary tasks, we can find the guaranteed worst-case
latency experienced by the controller.
Contribution. We propose a novel formal safety assurance frame-
work, SOTERIA, which uses themodel twins of the system’s physics,
controller, and timing properties to find whether the end-to-end
(worst-case) latencies are feasible in specific operating environ-
ments/scenarios. Such safety may be guaranteed even if the latency
is not feasible under all cases. Specifically, once the worst-case
latency value for the workload is found, SOTERIA uses the physics,
environment, and controller model twins to determine whether
it is feasible to drive in that environment with this computation
workload. To better illustrate how SOTERIA works, we present a
rigorous formal model of ROS 2 scheduler, and then demonstrate
an extensive case study of the proposed framework using F1Tenth
racing car running on several real-world racing tracks.

2 SOTERIA: PROPOSED SAFETY-ASSURANCE

FRAMEWORK

In this section, we introduce SOTERIA,2 our proposed formal safety
assurance framework. Fig. 2 provides an overview of the framework.
We first describe the system components of SOTERIA, followed by
the design flow for end-to-end verification.

2.1 System Model

Our system model M := {M𝑊 ,M𝑆 ,M𝐶 ,M𝑃 } is the composition
of workload model M𝑊 , scheduler model M𝑆 , controller model
M𝐶 , and physical modelM𝑃 . The relationship among these models
is depicted in Fig. 2. To ensure safety, we show that a model M in
environment E satisfies (⊨) a property 𝑃 , or M∥E ⊨ 𝑷 , whereM
and E are composed in parallel, and 𝑃 can be viewed as a system-
level property. For instance,M may be an F1Tenth racing car, E a
representation of obstacles and other geometric features such as
racing track, which may be time-varying, and 𝑃 a safety property,
e.g., collision avoidance.
Workload Model (M𝑊 ) consists of a set of 𝑛 tasks Γ = {𝜏1, 𝜏2, . . . ,
𝜏𝑛}. Depending on the inter and intra-dependencies of the tasks,
the task set Γ can be independent, dependent as processing chains
or directed acyclic graphs, etc. In addition, depending on the re-
lease pattern of the tasks, the tasks could be periodic, aperiodic,

2Soteria was the Greek goddess of safety, deliverance, and preservation from harm.
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Figure 2: Overview of relationship among models in SOTERIA. [Left] The timing model provides a high-fidelity simulation of

the scheduler used in the system. Queries for the timing model answer the question “Given a workload, what is the maximum

latency experienced by each task or task chain?”. Note that getting maximum latencies from the timing model using queries

serves a purpose similar to that of standard scheduling analysis-based ones. [Right] The Physics and World (i.e., environment)

model simulates the user’s control code. The computation happens in one virtual task per chain (using the chain latency from

the scheduler). The full scheduler is not simulated, and only tasks that affect the system’s physical behavior are required

(latency due to chain interference is already encoded in the latencies found in the scheduler model). Queries for the Physics

and World model answer the question “Given the latency the workload may experience, can the car crash?”

or sporadic. In order for the scheduler model M𝑆 to determine an
accurate worst-case latency, the tasks in Γ should include all the
tasks in the system that could affect the timings of the controller
execution, even if they do not directly contribute to the computed
values of the controller.
Scheduler Model (M𝑆 )models the behavior of the scheduler used
in the system to schedule the workloads in the underlying hardware
platform. Scheduling policies could be directly implemented in
operating systems (e.g., RTOS, RTLinux) or using middleware such
as ROS 2, and AUTOSAR for better composability and modularity
in complex autonomous systems. Scheduler model M𝑆 precisely
models the scheduling policies interacting with the workload model
to safely compute the worst-case latencies for the workloads used in
the system. It is essential to validate the functionality of the model
before use to ensure that all necessary properties of the scheduler
are correctly modeled in the scheduler model.
Controller model (M𝐶 ) defines an algorithm that reads state val-
ues from the Environment model (E), and outputs values that affect
the Physics model (M𝑃 ), with the goal of meeting the property 𝑃 .
The controller model experiences some latency between reading
the environment state and writing changes to the physics model
due to the execution time of the controller code, and latency caused
by other tasks in the system. The controller model does not simulate
the scheduler nor does it determine the latency value—instead, the
latency is computed separately inM𝑆 , where some of the tasks in Γ
represent the controller model. The user must provide a worst-case
execution time (not latency) for the controller.
Physics Model (M𝑃 ) is user-provided, and its functionality is vali-
dated independently. The physics model describes how the physical
system moves through and interacts with the environment over
time. The physics model may be defined by differential equations
that describe the motion of objects. The physics model should ex-
pose parameters that can be controlled from the controller model

M𝐶 . Note that most physical systems are hybrid dynamical sys-
tems, and precisely modeling is often hard. The objective is to use
a model twin for a physical system with a minimal sim2real gap.
Environment Model (E) defines the scenario within which the
physics model operates. The environment model exposes state
variables that can be read by the controller model as input. It may
also abstract some of the sensing processes that would happen on
a real physical system, such as localization or object detection, into
simpler tasks. Multiple versions of the environment model may be
implemented and tested with a single physics model.

2.2 End-to-End Verification

Before presenting the end-to-end verification steps, we first define
the latency for tasks.

Definition 1. (Task Latency) The task latency is the amount of

time between a task being released (becomes allowed to run) and com-

pleting execution (producing a result and yielding to the scheduler).

Tasks can be arranged in a chain layout, where the first task is
triggered by some external event (or a timer) and releases some
other task. The released task may cause other tasks to be released,
until some final task is completed, ending the chain. This structure
appears in systems as a way to read/receive sensor data, perform
some processing, and perform some actuation in the physical sys-
tem. Multiple chains can be in a system to perform different tasks.

Definition 2. (Worst-Case Chain Latency) The chain latency is

the amount of time between the release of the first task in a chain and

the completion of the last task in the chain. This is also referred to as

end-to-end latency. The worst-case latency is the maximum latency

to process a sensor input to actuation output in any system state.

Using formal modeling methods, we can determine a worst-case
latency for some control system, and determine whether the latency
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is acceptable to operate in a specific environment. Following are
the design steps to implement SOTERIA:

• Step 1: Derive a timing model M𝑇 := {M𝑊 ,M𝑆 } that
represents the timing properties of the system. Specifically,
M𝑇 should represent how decisions made by the scheduler
affect the tasks that directly control the physical system.
M𝑆 must be validated for correctness.M𝑇 determines the
worst-case latency of the controlling tasks, which is used
in M𝐶 . M𝑇 should not include implementation details of
the controller, only the layout of the controller and auxiliary
tasks (ref. left box of Fig. 2).

• Step 2: Derive a model of the environment, E where the
physical system will operate, a control algorithmM𝐶 , and
a physical system M𝑃 that is driven by the controller. For
instance, we can derive the dynamics of a physical system
(e.g., differential equations for an F1Tenth car) and the inputs
used to control it. E should represent the system’s operating
environment, and expose values that can be read by the
controller model as sensor inputs.M𝐶 should observe the
state of the E and M𝑃 , and write values to M𝑃 to influence
its behavior. The right box of Fig. 2 shows the interactions
between the environment, control, and physics models.

• Step 3: Separately verify the timing modelM𝑇 and physics
model M𝑃 for the controller M𝐶 and latency. M𝑇 uses the
workload and scheduler to determine the maximum response
time of the chains that directly affect the behavior of the
physical system. Once the end-to-end latency of the con-
troller tasks is determined, we can use M𝐶 , M𝑃 , and E to
determine whether the end-to-end latency results in accept-
able behavior. If the worst-case latency is inadequate, the
environment or controller can be adjusted, or the workload
can be modified to find a better worst-case latency.

3 APPLICATION EXAMPLE

3.1 Background

This section presents the necessary background for a short example
of an application for SOTERIA. We use Uppaal [15] to verify the
end-to-end safety assurance of the model twins of the computation
workload, physical system, and environment. We leave the full
validation and verification workflow to the Case Study in Sec. 4.
Uppaal. Uppaal provides tools to represent and verify timed hy-
brid automata. Timed automata use graphs of locations and state
transitions to represent a system. A timed automaton [5] is a tuple
𝐴 = (𝐿, ℓ0, 𝑋, Σ, 𝐸, 𝐼 ), where 𝐿 is a set of locations representing some
state in the system. ℓ0 ∈ 𝐿 is the initial state of the automaton. 𝑋 is
a set of clocks that evolve over time and Φ(𝑋 ) represents clock con-
straints, e.g., clock comparisons (𝑥 <= 5|𝑥 ∈ 𝑋 ). Locations can have
clock invariants 𝐼 : 𝐿 → Φ(𝑋 ) attached, where the invariants must
be met while the system is in the location. Moreover, Uppaal sup-
ports location invariant 𝐼 containing differential equations that gov-
ern the clock rate, e.g., 𝐼 := (𝑣 ′ = −9.8) ∧ (𝑦′ = 𝑣), where {𝑦, 𝑣} ∈ 𝑋 .
Locations are connected via edges 𝐸 ⊆ 𝐿 × Σ × Φ(𝑋 ) × 2𝑋 × 𝐿.
Edges can have guards/actions Σ attached (in Uppaal, actions are
also denoted as ‘updates’), where the associated guards must be
true for the edge to be taken. Taking an edge to another location

Speed
30mph 40mph 50mph

Brake Scale
0.0 1.0 10.0

Freq Freq
1Hz 0.00 4.39 14.01 1Hz 0.00 1.73 5.84
2Hz 0.00 0.00 0.221 2Hz 0.00 0.00 0.83
5Hz 0.00 0.00 0.00 5Hz 0.00 0.00 0.40

10Hz 0.00 0.00 0.00
A B

Table 1: Each table shows the minimum crash chance (with a

95%CI) for each experiment. Table A shows the crash chances

of different controller frequencies with different speed limits

for the leader car. Table B shows the crash chances when

applying different scales to the leader car’s hard brake option.

changes the state of the system to the attached location and can
trigger actions, such as setting a clock or other variable values.

3.2 Cruise Control System

To illustrate a simple use case of SOTERIA, we use a 1D automatic
cruise control system where a leader car can accelerate, decelerate,
or maintain its speed, and a follower car uses a PI controller to
maintain a constant time gap between it and the leader car.
Workload and SchedulerModels (M𝑇 ).The system uses a simple
Fixed Priority without preemption. The cruise control task has an
adjustable period, and has an execution time of 10 ms. Another
task runs in the system with a period of 100 ms and an execution
time of 5 ms, and has a higher priority than the cruise control task.
We can implement this using the SchedulerFramework model built
into Uppaal. The model shows that the cruise control system has a
latency of 15 ms for all the control periods used here.
Physics Model (M𝑃 ). The follower car’s motions are governed by
differential equations, where 𝑣𝐹 ′ = 𝑎𝐹 , 𝑥𝐹 ′ = 𝑣𝐹 . 𝑎𝐹 is controlled
by the follower vehicle controller.
Controller Model (M𝐶 ). The controller is a PI controller that mea-
sures the velocities and relative positions of the leader and follower
cars, and adjusts 𝑎𝐹 to try to keep a 1-second gap in between them.
Environment Model (E). The leader car is controlled in a similar
way to the follower car; 𝑣𝐿′ = 𝑎𝐿, 𝑥𝐿′ = 𝑣𝐿. 𝑎𝐿, the acceleration of
the leader car, is controlled by a random selector - at any given mo-
ment, it may decide to speed up (1.5𝑚/𝑠2), slow down (−1.5𝑚/𝑠2),
or maintain the same speed. Depending on the model configuration,
there is some chance for a hard brake (by default, −6𝑚/𝑠2).
Results. For each configuration, we can query the probability of
whether the follower car can crash into the leader car:

Pr[≤ MAX_TIME] ^ 𝑥𝐿 − 𝑥𝐹 ≤ 0

Uppaal outputs a probability window of the condition in the query
being true, with a configurable confidence value.

We ran two tests. First, we varied the maximum allowed speed
of the leader car. We placed the follower car 1 second behind the
first. Both started at half of the leader’s maximum speed. We tested
3 maximum speeds along with 3 possible control frequencies. This
demonstrates that as long as the first car holds to a speed limit
of 30 mph, a 1 Hz control loop for the follower’s cruise control is
enough to prevent a collision. Once the speed limit is set to 40 mph,
a 2 Hz control loop is required to prevent a crash. Finally, at 50 mph,
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20 ms
latency

40 ms
latency

Figure 3: The effects of latency on path safety, where the

green trajectory with less latency (20 ms) is a safe trajectory,

and the red one (with 40 ms latency) is unsafe.

the 1 Hz and 2 Hz control loops were not enough - only the 5 Hz
controller could drive without crashing.

Second, we varied the maximum braking force for the leader’s
hard-brake action. With a brake scale of 0, the leader car never
performs a hard brake. With a scale of 1, the leader car’s hard-brake
action applies -6𝑚/𝑠2 of deceleration to the leader car. The scaling
of 10.0 represents a hard crash into a solid object, applying -60𝑚/𝑠2
to the leader car. In the presence of any sudden braking, the 1Hz
controller could cause crashes. The 2 Hz could handle the “normal”
-6𝑚/𝑠2 sudden braking, and the 5 Hz model prevented the follower
car from crashing in all three scenarios.

These two tests demonstrate that SOTERIA can be used to select
an appropriate controller configuration depending on the expected
environment (speed limit, possibility of crashes) in which the sys-
tem will operate.

4 CASE STUDYWITH EXPERIMENTS

Here, we verify the safety of an F1Tenth [22] vehicle running on a
racing track using a Pure Pursuit [14] path follower. The vehicle uses
localization and a predefined path to drive along racetrack without
crashing. The vehicle uses the Robot Operating System (ROS 2) to
support communication between different software packages and
sensors, so the driving algorithm is subject to decisions from the
scheduling algorithm used in the ROS 2 executor. The scheduler
model, M𝑆 , implements the task selection process used by the
ROS 2 executor, and the workload model, M𝑊 , represents tasks
running under the executor. The physics model,M𝑃 , simulates the
motion of the vehicle on a 2-dimensional plane. The environment
is abstracted into just the centerline of the track, and success is
measured by whether the vehicle ever moves far enough away from
the centerline (such that it may collide with the track borders). We
show an example scenario in Fig. 3.

The tasks used to control the vehicle involve reading sensor data,
making driving decisions, and sending control data to motors. We
abstract these tasks into three tasks: a sensing task, a compute task,
and an actuation task, which form a processing chain. We also add
other randomly generated tasks to M𝑊 to simulate the effects of
other tasks on the system.

We use M𝑆 and M𝑊 to calculate the worst-case end-to-end
latency of the controlling chain caused by executor decisions and
blocking time due to other tasks.

We perform three tests: a schedulability test, where we measure
the effectiveness ofM𝑆 andM𝑊 , a sustainability test, where we
show that it is sufficient to test with only the worst-case response
time, and an end-to-end test, where we demonstrate the use of the
SOTERIA framework.

4.1 ROS 2 Background

ROS 2 is a collection of software tools and libraries supporting
robotics application development. Tasks in ROS 2 are written in
callbacks, which are called when certain conditions are met. For ex-
ample, timer callbacks run on a set period, and subscriber callbacks
run when a message is published to a specific topic.

ROS 2 callbacks run under executors, which maintain separate
queues for each type of callback. At runtime, executors refresh each
queue, collecting incoming messages and events, and queues up to
one job of each callback type. The executor then runs the queued
callbacks in order of type - timers run first, then subscribers, then
services, etc. Only once each queue is depleted does it move to the
next. Once all queues are completely empty, it begins again and
refreshes the queues.

4.2 Workload Model (M𝑊 )

We consider the workload as a set of 𝑛 processing chains Γ =

{𝜏1, 𝜏2, . . . , 𝜏𝑛}. Each processing chain (in short, chain) consists of a
sequence of callbacks. For instance, 𝑖𝑡ℎ chain 𝜏𝑖 = ⟨𝜏𝑖,1, . . . , 𝜏𝑖, |𝜏𝑖 | ⟩
is a sequence of |𝜏𝑖 | callbacks. The first callback 𝜏𝑖,1 of any chain 𝜏𝑖
is a timer callback. The timer callback is characterized as (𝑐𝑖,1,𝑇𝑖 )
where 𝑐𝑖, 𝑗 is the worst-case execution time (WECT) and 𝑇𝑖 is the
period. The other callbacks, known as subscriber callbacks, are only
characterized by theirWECT 𝑐𝑖, 𝑗 and triggered to execution by their
subscribed callback. Besides the sequence of callbacks, a chain is
further characterized as a tuple (𝐶𝑖 ,𝑇𝑖 ), where 𝐶𝑖 =

∑
∀ 𝑗 𝑐𝑖, 𝑗 is the

WECT of the chain and𝑇𝑖 is the period (same as the timer callback’s
period of the chain). Without loss of generality, we consider integer
time instances only, aligned with the granularity of the clock tick
supported by Uppaal.

4.3 Scheduler Model (M𝑆 )

We implement ROS 2 executor behavior in Uppaal for modeling
the scheduling policy of ROS 2. The executor model takes a list of
timer and subscriber callbacks, including their layout and execution
times, and determines the maximum possible callback and chain
latencies due to the scheduling policy and task interferences. Since
the scheduler and callback models are implemented as timed au-
tonoma, their properties can be found with symbolic queries. The
models keep track of the response times of chain instances, so a
symbolic query for the supremum of each chain’s response time
will determine the worst-case responses of the system. We describe
how the callback and executor models function in detail below.
Callback Model: Fig. 4 presents the Uppaal time automaton tem-
plate of ROS 2 callback. This model handles features for both timer
and subscriber callbacks. Uppaal instantiates one copy of the call-
back template for each callback in the system. Each callback starts
in the postJobComplete state and, depending on the callback type,
waits for some condition. If the callback is a timer, it checks if
enough time has passed on the per-callback timer. If so, it pro-
ceeds to handleOverload, and if not, moves to timerSleeping
until enough time has passed. handleOverload adjusts the release
time of the callback if the next release time is more than one pe-
riod in the past. If the callback is a subscriber, it checks it has
received at least one message by calling hasMessage() and moves
to subSleeping or taskReleasing depending on the result. Upon
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Figure 4: ROS 2 Callback template. Color code: State labels (𝐿),

State invariants (𝐼 ), Guards and Actions (Σ), Synchronizations.
The initial state, ℓ0, is denoted with an extra circle.

entering taskReleasing, the callback emits a schedEvent! event,
waking up the executor if it is sleeping state, and adds itself to the
appropriate wait set with jobRelease(). jobRelease() does not
add the task to the executor’s wait set immediately — the execu-
tor will only recognize the release after the executor has called
refresh(). The callback waits until the executor selects it using
the global runId and receives a runJob! event. Once both condi-
tions are satisfied, the callback resets its runtime timer and sleeps
until its WCET has passed before notifying the scheduler over the
jobDone! event. It also calls jobComplete(thisId), which sends
a message to the next callback in the chain, if any exists. If the task
is a timer, jobComplete(thisId) adjusts the taskTimer clock for
the next release. In case a timer callback is blocked for more than
one period, the handleOverflow state moves the next release time
of the timer to the next period in the future.
Executor Model (E): Uppaal time automaton template of ROS 2
executor model is shown in Fig. 6. The executor maintains ready
sets for each callback type, and depletes each set in order of type.
It runs all timers in the ready timers set, in order of registration
(when the timer was declared and added to the executor). Once the
ready timers set is empty, it runs all the subscribers in the ready
subscribers set. Once the subscribers set is empty, it calls refresh(),
which updates the ready timers and subscribers with pending jobs.
As a result, refresh() can only happen once both the ready timer
and subscriber sets are empty. Only one job of each individual
callback is considered, so if there are two queued messages for a
subscriber, only one job for that callback will be released. If no
jobs are added to the sets during a refresh, the scheduler sleeps
until a new job is released. When the scheduler runs a job, it sets a
globally-shared runId value to the id of the selected job and sends
a runJob! event. When a runJob! event fires, each task compares
the shared runId value with its own ID, and if they match, it has
been selected to run. The task waits for its execution time, releases
any additional tasks, and sends a jobDone! event, which allows the
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Figure 5: Synchronized interactions between the executor and

scheduler models. The executor template is colored green,

and the ACT and COMPUTE templates, instantiated from the

callback template, are colored blue. During callback selection,

tasks are notified of their turn by the scheduler’s runJob!
channel. Once the scheduler sends runJob!, it waits on the

jobDone? channel, which the job broadcasts to return control

back to the scheduler. The scheduler and callback templates

use schedEvent! to notify each other of newly released tasks

and queue refreshes.

init()

timersRdy��0

runId��nextTimer()

selectedTimer

runJob!

runningTimer

jobDone?

timersRdy()��0

subsRdy()��0
runId��nextSub()

selectedSub

runningSub

runJob!
jobDone?

checkTimers

checkSubs

subsRdy()��0

doRefresh
refresh()

schedEvent!

anyRdy()��0

schedEvent?

anyRdy()��0

sleeping

refresh()

schedEvent?

postRefresh

start

Refresh and Wait
for Events

Run Queued Timers

Run Queued Subscribers

Figure 6: ROS 2 Executor model. Color code: State labels (𝐿),

State invariants (𝐼 ), Guards and Actions (Σ), Synchronizations.
The initial state, ℓ0, is denoted with an extra circle.

executor to move on to the next job. For simplicity, the executor
model only implements timer and subscriber callbacks, the most
common types of callbacks used in ROS 2.
Synchronization between Callback and Executor Model. The
schedEvent! synchronization is used to ensure tasks and the sched-
uler are kept aware of state changes. When the scheduler performs
a queue refresh and finds that there are no jobs to run, it waits on
schedEvent? in the sleeping state. When a timer releases a job,
it wakes the scheduler by broadcasting schedEvent!. Likewise, re-
leased callbacks wait for queue refreshes on schedEvent?, which is
sent by the scheduler whenever a queue refresh is performed. Since
subscriber callbacks can only be released once a calling callback
completes execution, subscribers wait for other jobs to complete
on jobDone?, where it proceeds to taskReleasing once a message
has been received. An example of a task and scheduler interaction
is shown in Fig. 5.
Computation of chain latency. To compute chain latency, we
utilize the following properties of ROS 2 executor scheduling policy:
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Property 1. At most, one instance of a callback executes in a
processing window [9, 26].
Property 2. The callback instances of a chain instance execute in
consecutive processing windows one by one [9, 26].

Corollary 1. Amongmultiple concurrently active chain instances

in ROS 2, the earlier-released chain instance will always be completed

before later-released instances if the instances are from the same chain.

Proof. The Corollary is a direct consequence of the highlighted
properties of ROS 2 executor scheduling policy. □

The model supports a MAX_CHAIN_INSTANCES value which con-
trols the maximum amount of instances of a single chain that can
be running at a time. To measure the end-to-end latency of call-
back chains, each chain has an array of timers—one for each possi-
ble concurrent chain instance—called chainLatencies to record
the time between chain releases and completions. Each chain’s
chainLatencies array serves as a queue to record for how long
each currently running chain instance has been released. Once a
chain timer releases, it sets the first free timer in chainLatencies
to 0, and allows it to count up. Due to the queue refreshing behavior,
an earlier-released chain instance will always be completed before
a later-released instance if the instances are from the same chain
(Corollary 1). When the last callback in a chain calls jobComplete,
it clears the first value in chainLatencies and moves any re-
maining values one position closer to the start of the array. As
a result, the latency of the oldest currently running instance of
a chain will always be stored in the first value of that chain’s
chainLatencies array. To determine the maximum possible la-
tency of any chain, it is enough to query for the supremum of
the first value in chainLatencies. If a timer callback tries to start
a chain instance and MAX_CHAIN_INSTANCES chain instances are
already running, an overloaded flag is set, and the verification fails.
Validation.We can validate that the executor and callback mod-
els represent the described behavior of the ROS2 executor using
queries:

𝐴□ !duplicateWaitingJobs()
𝐴□ waitsetsOrdered()
𝐴□ E .checkSubs imply nTimerRdy() == 0
𝐴□ E .doRefresh imply nTimerRdy() == 0
𝐴□ E .doRefresh imply nSubsRdy() == 0

duplicateWaitingJobs() checks if there is ever more than one
job of each callback in the waitsets at any time. During the refresh
process, the executor only selects one job of each individual callback,
even if there are multiple messages queued. waitsetsOrdered()
checks whether the jobs in the waitset are sorted in the callback
registration order. For each callback type, the ROS 2 executor selects
the callback in order of their declaration. In the checkSubs state, all
timer jobs in the waitset must have been run and removed. Similarly,
in the doRefresh state, all timer and subscriber jobs in the waitset
must have been removed, sincewaitset the executor only refreshes
the waitset once they are all empty.

Evaluation. To evaluate the scheduler model, we first present
a numerical example to illustrate the computation of worst-case

Table 2: The taskset used to represent the driving setup. These

timings are arbitrary and represent a simplified workload.

Label Name Callback Type Period WCET Calls
Task(0) SENSE Timer 50 ms 5 ms DRIVE
Task(1) DRIVE Subscriber 20 ms ACTUATE
Task(2) ACTUATE Subscriber 5 ms
Task(3) DUMMY0 Timer 70 ms 5 ms DUMMY1
Task(4) DUMMY1 Subscriber 10 ms DUMMY2
Task(5) DUMMY2 Subscriber 5 ms

latency usingM𝑆 . Then, we present a large-scale comparison with
a state-of-the-art schedulability test [9].

Example 2. If we pass the taskset described in Table 2 to the timing

model in Uppaal, it will instantiate the callback templates with the

provided properties. Queries ran against the model will now reflect

how the given taskset behaves under the ROS 2 executor, so we can

use queries to determine the maximum latency each callback can

experience. Note that chain latencies are tracked in the chainResults
array, so querying for the supremum value while in a chain-ending

state allows us to determine the maximum latency experienced by a

chain.

sup{Task(lastInChain).jobComplete}
: chainResults[chainIndex]

This query should be called on the ACTUATE callback, which is the

last task of the driving chain.Uppaal returns a supremum for the clock

given in the query. The chainResults array is updated whenever a

chain completes. The values in chainResults are clocks and increase
over time, so the value must be measured in the same instant that it is

written. The query checks for the supremum only when the callback is

in its jobComplete state. If run for the last callback in the first chain,
the query returns the worst-case latency of the chain, 50.

Because the sup query in Uppaal is a symbolic query, where the
entire possible state space is examined, it is guaranteed that the
results will always hold for a taskset and that the latency supremum
for each callback will never be exceeded.

Comparison with schedulability test. Previous works (e.g., [9,
10, 26], etc.) use analytical schedulability tests to determine the max-
imum latencies of ROS 2 callbacks and execution chains. Blaß et al. [9]
provide a worst-case latency bound for ROS 2 processing chains by
taking advantage of the fact that only one instance of each callback
can be run between executor refreshes.

To compare ourmodel-based approachwith [9], we use randomly
generated tasksets from 8 different utilizations, and compare the
latency results from bothmethods.We chose 8 utilizations from [0.1,
0.8]. For each utilization value, we generate 500 random workloads
using UUniFastDiscard [8]. Each workload has up to 4 callback
chains, and each chain may have up to 4 callbacks. Each chain
begins with a timer, where each timer has a period between 20
and 100 time units. To reduce the search space for model-based
verifications, we limit the timer periods to be divisible by 10. We use
UUniFastDiscard to distribute the utilization between the generated
chains, and again to distribute each chain utilization to the callbacks.
For each generated workload, we calculate the end-to-end latencies
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Figure 7: Worst-case latency bound using our model and

Blaß et al. [9]

using the schedulability test from [9] and our model-based method.
For our model, we set MAX_CHAIN_INSTANCES to 2. The method
from Blasß et al. has an additional per-callback liveliness parameter,
which we set to two periods. Due to this difference, and for a
fair comparison, we only show workloads that were considered
schedulable by both tests.

A summary of the worst-case latency comparison is presented
in Fig. 7. As expected, the model-based test always performs better
than, or at least equal to, the schedulability test. This is expected
since themodel-basedmethod performs a symbolic search of all pos-
sible state space and returns exact worst-case latency, whereas the
schedulability test [9] only returns a safe upper bound of worst-case
latency. Accurate worst-case latency estimates are crucial. Over-
estimating may cause simulations to incorrectly label a sufficient
controller as inadequate.

4.4 Physics Model (M𝑃 )

To represent the F1Tenth car, we use a two-wheeled bicyclemodel [4,
24] which is commonly used as an abstraction for four-wheeled
Ackermann-steering vehicles. The bicycle model combines the two
front wheels into a single wheel, and the two rear wheels into a
single wheel, and while turning, the car rotates about the center of
its rear axle. Tire slip is not considered.

In the two-wheeled bicycle model, the car’s state is described by
five variables, representing the vehicle’s 2-D position (𝑠𝑥 , 𝑠𝑦), veloc-
ity 𝑣 , yaw 𝛿 , and steering angle Ψ. The state change rates are com-
puted as, ¤𝑠𝑥 = 𝑣 cos(Ψ), ¤𝑠𝑦 = 𝑣 sin(Ψ), ¤𝛿 = steerLimit(steeringIn),
¤𝑣 = accLimit(accIn), and ¤Ψ = 𝑣

𝑙𝑤𝑏
tan(𝛿), where 𝑙𝑤𝑏 is the vehi-

cle’s wheelbase length or the distance between the front and rear
tire. This affects the turning radius of the vehicle. The variables
steerRate and limitAcc limit the steering and acceleration inputs
to the physical limits of the vehicle, and steeringIn and accIn
are control inputs, which can be set by the computation model.

By manipulating the control inputs over time, the differential
equations simulate the vehicle’s motion and update state variables.

4.5 Controller Model (M𝐶 )

The controller generating vehicle control inputs is a path-following
Pure Pursuit [14] controller. The path is given as a set of waypoints,

worldReady?
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driverClock��0

driverClock��LOOP_TIME

driverClock'��1 ��
latencyClock'��1 ��
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readState()

driverClock'��1 ��
latencyClock'��1 ��
latencyClock��MAX_LATENCY

latencyClock��CHAIN_WCET

doDrive()

sleeping blockedRead

blockedAct

init

Figure 8: The model used to represent the driving callbacks

when used alongside the physics model.

and the controller uses the car’s current location along with a
lookahead value to select a target point along the line. It uses the
target point, along with the car’s current state, to select a steering
and throttle value. The path follows the center of the track, and
the vehicle is considered ‘crashed’ if the vehicle’s distance from the
line exceeds half of the track width, which would cause the vehicle
to collide with a wall. Obstacles are not considered.
Controller model implementation. Callback chains that directly
influence the vehicle are abstracted in the controller model as a sin-
gle task. Fig. 8 shows the model that represents the controller chain.
The model performs the actions of the driving chain: readState()
stores the current state of the vehicle, and doDrive() performs
the driving calculations, updating steeringIn and speedIn. The
model uses two clocks: driverClock to represent the chain’s timer,
and latencyClock to represent latency experienced by the chain.
The compute model waits in sleeping until the controller period
passes, andmoves to blockedRead, resetting both the driverClock
and latencyClock. The model can wait in blockedRead for some
time, for at most MAX_LATENCY (calculated by the scheduling model
above) time units. The next transition to blockedAct records the
state of the vehicle. The model must remain in blockedAct until
the latencyClock reaches CHAIN_WCET, which represents the exe-
cution (and therefore minimum) time that the driving chain takes.
Once that time has passed, the model can remain in blockedAct
until the latencyClock reaches MAX_LATENCY. Overall, the model
represents blocking time between each callback in the chain, as
well as the execution times of each callback. Note that this does
not fully represent the callback behaviors, just the possible latency
experienced by the chain. The physics and controller models run
together in the same file. It is not necessary for the controller model
to simulate all tasks in the system—it only needs to simulate the
tasks relevant to controlling the car, nor does it simulate the sched-
uler. This is possible because the latencies calculated separately in
the scheduling model already consider the scheduling decisions
and possible interferences from all tasks in the system.

The environment model (E) runs periodically, each time call-
ing updateWorld(), which compares the vehicle state with the
environment representation and updates the trackDist variable
to check for safety in the verification queries.

The implementation of runDrive() and updateWorld() are
done in an external shared library, which can be called fromUppaal.
This is done to ensure that the driving logic matches the real-world
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controller as closely as possible, allows for code reuse, and provides
performance improvements over implementing it in Uppaal.
Safety verification. Since the physics and controller models use
differential equations to describe state evolution, they cannot be
queried using symbolic queries, and an exhaustive search is not pos-
sible. Therefore, we use statistical queries, where Uppaal performs
a large number of simulations and makes empirical measurements
of the model properties.

Pr[<= MAX_TIME] ^ |line_dist| > TRACK_WIDTH/2
The above query returns an interval for the probability (e.g.,

either [0, 0.001] or [0.9, 0.999]) with a confidence level (e.g., 95%)
that the given constraint is true for a given confidence value. If
the confidence value meets the application requirements, then the
constraint is likely to hold.

To produce the results in Fig. 1, we set maxLatency of each
callback to the latencies found in the scheduler model queries and
the WCET values from the taskset. The safety query succeeds on
the safe map but fails on the unsafe map. By adjusting the times of
the dummy chain (or the driving chain) to reduce the driving chain
latency, the controller can be made safe on both maps.

The time horizon and the number of simulations can be adjusted
using MAX_TIME and Uppaal’s Statistical Parameters settings. To
obtain reasonable confidence, a large number of simulations is
required. The number of simulations run is decided by Uppaal for
a given confidence value, but can also be specified by the user

4.6 End-to-End Verification

Once the end-to-end response time is calculated using the scheduler
model, we need to evaluate whether it is feasible for the controller
to drive on a track while running with latency. The times at which
the controller model reads the vehicle state and outputs new control
values are affected by theWCET and latency values from the taskset
definition and the executor model. Increasing the time between
sensing the environment at the beginning of the chain and causing
a physical actuation at the end means that the system responds
slower to changes in the environment and system, and may take
actions that lead to unsafe states.

The vehicle may perform differently depending on the environ-
ment configuration, since individual environments may require
lower response times than other environments. Therefore, the con-
troller should be tested in the environment in which it is expected
to be used. To test the controller in an environment, it needs to be
simulated across a large variety of states and checked for safety.
We do this using Uppaal’s statistical queries. The vehicle starts at
a random position on the centerline, and the vehicle and controller
are simulated up until some time horizon while being monitored for
safety. If any run violates a safety constraint, then the environment
is infeasible for this combination of models.
Environment Model. The environment is a racetrack stored as a
series of waypoints forming a centerline. The centerline is loaded in
an external library, which contains functions accessible to Uppaal
via its Foreign Function Interface. Both the driver and environment
model call functions from this library to make read waypoints,
make driving decisions, and update safety properties, which are
used by queries to determine whether the vehicle is in a safe state. In
Uppaal, the Environment template polls the vehicle’s position and

Figure 9: The outer plot shows themaximumpossible latency

for safe driving on a selection of 5maps. The inner plot shows

the success rates of running the driver with different latency

values on a selection of possible maps.

calculates its proximity to the nearest centerline segment, storing
the value in line_dist. If line_dist ever exceeds the width of
the track, then the vehicle is in an unsafe state.
Evaluation. To evaluate the proposed method, we randomly gener-
ate workloads composed of non-driving tasks that can add latency
to the driving chain and a driving chain with randomly selected
execution times to represent different possible system implementa-
tions. The generated workloads always contain the callbacks from
Fig. 1 but with randomly selected execution times. The workloads
also contain some randomly generated interfering tasks, which to
not directly affect the vehicle’s behavior, but may add latency. For
example, the SENSE callback represents the process of reading sen-
sor input and determining the vehicle’s location on the racetrack.
Different sensors and algorithms can be used for this step and can
take varying amounts of time. The same goes for the DRIVE and
ACTUATE steps. We use the ROS 2 executor model to estimate the
maximum latency of the callbacks in each workload’s driving chain
and use a schedulability test [9] for comparison. For both sets of
calculated latencies, we test each configuration with multiple race-
tracks. We use 10 racetracks from Betz et al. [7], which are traced
from real-world F1 racetracks and scaled down for F1Tenth cars.
Sustainability Analysis.We verify the sustainability of the verifi-
cation results to ensure that if a system is identified as safe in the
worst-case latency, the systemwill remain safe even if it experiences
less latency than in the worst-case during runtime. Fig. 9 shows
the sustainability results across different racing tracks. Notice that
the latency at the transition of step function for each track is the
latency safety upper bound; any latency less than that would allow
the system to remain safe and vice versa. Since this evaluation is
based on a statistical query, such sustainability results hold with
high confidence but are not guaranteed.
Evaluation on worst-case latency. To demonstrate the end-to-
end usage of Soteria, we generate 100 random tasksets, where the
utilization of each taskset is 50%. The first chain is set to have 3
callbacks, has a period of 40 ms, and serves as the driving chain for
the vehicle. We add up to 3 more chains, each of which can have
up to 4 callbacks and have random periods from 20 to 100 ms. We
use UUniFastDiscard to assign execution times for all callbacks. We
then find the maximum response time of the driving chain using
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Figure 10: The number of tasksets that Uppaal determines

can safely drive, for each map, using latencies from our

method and Blaß et al. [9].

Table 3: A selection of results from the end-to-end tests using

randomly generated workloads. Green checkmarks denote

latencies where Uppaal determined that the controller can

run safely at a high confidence.

Latency Aus Osc Bud Sil Hoc Nue Mex Soc Sao Cat
M A M A M A M A M A M A M A M A M A M A M A
56 58 × × × × × × × × × × × × × × × × × × × ×
60 68 × × × × × × × × × × × × × × × × × × × ×
52 58 × × × × × × × × × × × × × × × × × × × ×
60 62 × × × × × × × × × × × × × × ✓ × × × × ×
52 58 × × × × × × × × × × × × × × ✓ × × × × ×
52 70 × × × × ✓ × × × × × × × × × ✓ × × × × ×
34 64 ✓ × ✓ × ✓ × ✓ × ✓ × ✓ × ✓ × ✓ × ✓ × ✓ ×
48 50 ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓

34 36 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

44 46 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

our model-based method, and the analytical method from Blaß et al..
For both latency values, we test each workload on 10 maps, where
we use an Uppaal statistical query to determine whether the model
can perform on each map for the given response times.

Fig. 10 shows the results from this test. The number of successful
tasksets for each map is shown on the radius axis and the 10 maps
on the angle axis. As the model-based method always finds a lower
or equal response time bound compared to the analytical method,
more taskset configurations can be used successfully on the tracks.

Table 3 shows whether the controller could safely drive the vehi-
cle across a selection of 10 tracks. We selected 10 random tasksets
from the case study and showed the computed latency values, as
well as whether each latency value is acceptable for each track.
These results validate our hypothesis related to SOTERIA with a
specific environment model. For instance, the first eight tasksets
failed in the worst-case environment model, but there are several
tracks that are safe for these tasksets.

5 RELATEDWORK

Formal Methods for CPS. In a recent survey of autonomous sys-
tems and the challenges they pose, Wing [30] asks how we can
address scenarios that have life-critical consequences for people
and society, and suggests that we require “new formal methods
techniques” to do so. With respect to autonomous ground vehicles
in particular, Kopylov et al. [19] verify a “safety net” for a waypoint
navigation controller using ModelPlex [21] to synthesize a monitor

using theorem proving. Lin et al. [20] extend the work by combin-
ing theorem proving and reachability analysis with Flow* [12] for
synthesizing switching monitors. In the context of F1Tenth vehicles,
Ivanov et al. [17] verify the safety of a neural network controller
using their Verisig tool [18]. Vehicles operate at constant throttle in
a structured environment, and the effect of missing LiDAR rays due
to reflections is evaluated. [23] presented a systematic literature
review on verification and validation for safe autonomous cars. Our
concurrent works [28, 29] utilized environment feedback to design
mixed-criticality scheduling with end-to-end verification.

ROS 2 and Schedulability Analysis. ROS 2 recently received sig-
nificant attention from the real-time systems community after the
pioneering work by Casini et al. [10]. Many works (few to men-
tion [9, 26, 27]) subsequently improved the proposed worst-case
latency bound of ROS 2 workloads and also proposed modified
executor schedulers [3, 6, 13]. However, to our knowledge, there is
no exact analysis for finding worst-case latency ROS 2 workloads.
Formal methods have the potential to find exact worst-case timing
bound (regardless of scalability issues) and were used in earlier
works for (exact) schedulability analysis for the standard workload
and resource models, e.g., exact worst-case response time comput-
ing for DAG tasks [25], exact scheduling test for non-preemptive
self-suspending tasks [31], etc.

Besides standard scheduling problems, formal methods are also
used for timing analysis of ROS 2 [16] and AUTOSAR [32]. The
model in [16] does not consider communication between callbacks,
and instead requires that the release times of callbacks be predeter-
mined and provided to the model as inputs. By simulating the chain
relationship between callbacks, our model requires only the layout
and execution times as input, and calculates the release times using
the behavior of the ROS 2 executor.

6 CONCLUSION AND FUTUREWORK

We presented SOTERIA, an end-to-end safety assurance framework
that uses model twins of a system’s computational and physical
components operating in a specific environment. Our framework
prioritizes safety assurance within the intended operating environ-
ment rather than pessimistically verifying against worst-case con-
ditions. In addition, we conducted a detailed case study of SOTERIA
on a ROS 2-based F1Tenth racing car. Our rigorous formal model
twin of ROS 2’s functional behavior enabled us to determine the
exact worst-case latency for verifying the car’s safety across ten
different real-world racing tracks. Extensive empirical evaluation
confirms that our approach outperforms state-of-the-art methods
in safety assurance. However, one of the key limitations of model-
based safety assurance is that it is more computationally expensive
than analytical methods, as symbolic verification explores the en-
tire state space. A well-informed design can help reduce the search
space, making model-based methods feasible for more applications.
Additionally, developing accurate models of hybrid dynamical sys-
tems is challenging, particularly for compplex physical systems.
Our case study focuses on a static environment, but future work
could explore applying SOTERIA in dynamic environments. Build-
ing model twins for dynamic environments would require two-way
verification, where the digital twin’s verified model informs the
physical system’s design, while real-world feedback is used to refine
the model twin.



Soteria: A Formal Digital-Twin-Enabled Framework for Safety-Assurance of Latency-Aware Cyber-Physical Systems HSCC ’25, May 6–9, 2025, Irvine, CA, USA

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feedback.
This workwas supported in part by the National Science Foundation
under Grants CMMI 2246672 and CCF 2124205.

REFERENCES

[1] ROS 2 Documentation. https://docs.ros.org/en/foxy/index.html.
[2] Autosar adaptive platform. https://www.autosar.org/standards/adaptive-

platform/, 2022. [Online; accessed 13-October-2022].
[3] A. Al Arafat, K. Wilson, K. Yang, and Z. Guo. Dynamic priority scheduling

of multithreaded ros 2 executor with shared resources. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 43(11):3732–3743, 2024.
[4] M. Althoff, M. Koschi, and S. Manzinger. Commonroad: Composable benchmarks

for motion planning on roads. In 2017 IEEE Intelligent Vehicles Symposium (IV),
pages 719–726. IEEE, 2017.

[5] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[6] A. A. Arafat, S. Vaidhun, K. M. Wilson, J. Sun, and Z. Guo. Response time analysis
for dynamic priority scheduling in ros2. In Proceedings of the 59th ACM/IEEE

Design Automation Conference, pages 301–306, 2022.
[7] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mang-

haram. Autonomous vehicles on the edge: A survey on autonomous vehicle
racing. IEEE Open J. Intell. Transp. Syst., 3:458–488, 2022.

[8] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

[9] T. Blaß, D. Casini, S. Bozhko, and B. B. Brandenburg. A ros 2 response-time
analysis exploiting starvation freedom and execution-time variance. In 2021 IEEE

Real-Time Systems Symposium (RTSS), pages 41–53. IEEE, 2021.
[10] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg. Response-time analysis of

ROS 2 processing chains under reservation-based scheduling. In 31st Euromicro

Conference on Real-Time Systems, pages 1–23. Schloss Dagstuhl, 2019.
[11] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf, and Q. Zhu.

Automotive cyber–physical systems: A tutorial introduction. IEEE Design & Test,
33(4):92–108, 2016.

[12] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Computer Aided Verification: 25th International Conference,

CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings 25, pages 258–263.
Springer, 2013.

[13] H. Choi, Y. Xiang, and H. Kim. Picas: New design of priority-driven chain-aware
scheduling for ros2. In 2021 IEEE 27th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 251–263. IEEE, 2021.
[14] R. C. Coulter et al. Implementation of the pure pursuit path tracking algorithm.

Carnegie Mellon University, The Robotics Institute, 1992.
[15] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen. Uppaal

SMC tutorial. International Journal on Software Tools for Technology Transfer,
17(4):397–415, 2015.

[16] L. Dust, R. Gu, C. Seceleanu, M. Ekström, and S. Mubeen. Pattern-based verifica-
tion of ros 2 nodes using uppaal. In International Conference on Formal Methods

for Industrial Critical Systems, pages 57–75. Springer, 2023.
[17] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Case

study: verifying the safety of an autonomous racing car with a neural network
controller. In Proceedings of the 23rd International Conference on Hybrid Systems:

Computation and Control, pages 1–7, 2020.
[18] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying safety

properties of hybrid systems with neural network controllers. In Proceedings

of the 22nd ACM International Conference on Hybrid Systems: Computation and

Control, pages 169–178, 2019.
[19] A. Kopylov, S. Mitsch, A. Nogin, and M. Warren. Formally verified safety net for

waypoint navigation neural network controllers. In Formal Methods: 24th Inter-

national Symposium, FM 2021, Virtual Event, November 20–26, 2021, Proceedings

24, pages 122–141. Springer, 2021.
[20] Q. Lin, S. Mitsch, A. Platzer, and J. M. Dolan. Safe and resilient practical waypoint-

following for autonomous vehicles. IEEE Control Systems Letters, 6:1574–1579,
2021.

[21] S. Mitsch and A. Platzer. ModelPlex: Verified runtime validation of verified
cyber-physical system models. Formal Methods in System Design, 49:33–74, 2016.

[22] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam. F1tenth: An open-source
evaluation environment for continuous control and reinforcement learning. Pro-
ceedings of Machine Learning Research, 123, 2020.

[23] N. Rajabli, F. Flammini, R. Nardone, and V. Vittorini. Software verification and
validation of safe autonomous cars: A systematic literature review. IEEE Access,
9:4797–4819, 2020.

[24] P. Riekert and T.-E. Schunck. Zur fahrmechanik des gummibereiften kraft-
fahrzeugs. Ingenieur-Archiv, 11:210–224, 1940.

[25] J. Sun, F. Li, N. Guan, W. Zhu, M. Xiang, Z. Guo, and W. Yi. On computing exact
wcrt for dag tasks. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2020.

[26] Y. Tang, Z. Feng, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi. Response time
analysis and priority assignment of processing chains on ROS2 executors. In
2020 IEEE Real-Time Systems Symposium (RTSS), pages 231–243. IEEE, 2020.

[27] H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J.-J. Chen. End-to-end
timing analysis in ros2. In 2022 IEEE Real-Time Systems Symposium (RTSS), pages
53–65. IEEE, 2022.

[28] K. Wilson, A. Al Arafat, J. Baugh, R. Yu, and Z. Guo. Physics-aware mixed-
criticality systems design via end-to-end verification of cps. In 2024 22nd ACM-

IEEE International Symposium on Formal Methods and Models for System Design

(MEMOCODE), pages 98–102. IEEE, 2024.
[29] K. Wilson, A. Al Arafat, J. Baugh, R. Yu, and Z. Guo. Physics-informed mixed-

criticality scheduling for f1tenth cars with preemptable ros 2 executors. In 2025

31st Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2025.

[30] J. M. Wing. Trustworthy AI. Communications of the ACM, 64(10):64–71, 2021.
[31] B. Yalcinkaya, M. Nasri, and B. B. Brandenburg. An exact schedulability test for

non-preemptive self-suspending real-time tasks. In 2019 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 1228–1233. IEEE, 2019.
[32] M. Zhang, Y. Teng, H. Kong, J. Baugh, Y. Su, J. Mi, and B. Du. Automatic modelling

and verification of AUTOSAR architectures. Journal of Systems and Software,
201:111675, 2023.

https://docs.ros.org/en/foxy/index.html
https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/adaptive-platform/

	Abstract
	1 Introduction
	2 Soteria: Proposed Safety-Assurance Framework
	2.1 System Model
	2.2 End-to-End Verification

	3 Application Example
	3.1 Background
	3.2 Cruise Control System

	4 Case Study with Experiments
	4.1 ROS 2 Background
	4.2 Workload Model (MW)
	4.3 Scheduler Model (MS)
	4.4 Physics Model (MP)
	4.5 Controller Model (MC)
	4.6 End-to-End Verification

	5 Related Work
	6 Conclusion and Future Work
	References

