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Abstract—Autonomous systems are increasingly used in safety-
critical domains, including industrial automation, autonomous
vehicles, and the industrial Internet of Things. Verifying both the
functional and temporal correctness of these systems is essential
to ensure safety before deployment. However, end-to-end verifica-
tion is challenging due to the interaction of continuous-time phys-
ical processes with discrete-time computational systems. Existing
formal methods often assume simplified or static computational
models, while traditional real-time systems focus on meeting
timing constraints without explicitly linking them to physical
safety. We address this gap by proposing a physics-informed
mixed-criticality (MC) verification framework for cyber-physical
systems, which allows the integration of computational and
physical models for dynamic, fine-grained safety assurance. Our
framework incorporates feedback from the local environment
to guide criticality-based mode switching, ensuring adaptive
responses to real-time physical states rather than relying on
global worst-case assumptions. We demonstrate the feasibility of
our approach with a prototype implementation on an autonomous
F1Tenth vehicle using preemptive EDF scheduling on ROS 2.
Verification is conducted using UPPAAL to validate system be-
havior, mode transitions, and physical safety constraints. Results
show that our framework effectively manages MC requirements,
enhancing responsiveness and safety in dynamic environments.

Index Terms—Mixed-Criticality Systems, Temporal Verifica-
tion, Formal Methods, F1Tenth cars, UPPAAL

I. INTRODUCTION

Cyber-physical systems, such as industrial control systems,
autonomous vehicles, and the industrial Internet of Things,
autonomously and seamlessly interact with the physical world,
making them safety-critical in the sense that failure can lead to
catastrophic effects on human lives and physical well-being.
Therefore, verifying the temporal and functional correctness
of these systems before deployment is essential. Traditional
safety analysis of such systems typically treats timing re-
quirements and functional correctness in the physical world
as two separate steps [1]: (i) verifying physical correctness
using formal methods and deriving safe timing bounds from
control theory and (ii) designing and verifying computing
systems independently to meet these timing bounds. While
such approaches are widely used for verifying these systems,
they often result in overly conservative designs, as all timing
bounds are derived based on worst-case scenarios, including
the operating environment.

Mixed criticality (MC) systems [2] deal with changes in
the execution time of tasks in the system by considering
more than one worst-case execution time (WCET) model for
each task depending on its criticality to the system’s safe
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Fig. 1: An autonomous vehicle shown at two positions on
a racetrack, illustrating varying event reaction time require-
ments for safety. On a straight section of track, the controller
can safely operate with a 60 ms reaction time. However,
on a curved section, a 40 ms reaction time is necessary
to maintain safety. Traditional verification methods would
mandate a uniform 40 ms reaction time for the entire track.
By using mixed-criticality scheduling, however, a dual-critical
system can be devised, allowing the vehicle to operate in one
mode on straight segments and switch to a more demanding
mode on curves.

operation. For instance, in a dual critical system, in normal
operation, the scheduler assumes all tasks use the lower of
the two WCETs. Once a critical task in the system exceeds
its expected execution time without signaling completion, the
scheduler performs a mode switch. The mode switch changes
the properties of some tasks in the system to allow the critical
task to be completed before its deadline. In this work, we
consider changes in the physically required reaction time
instead of temporal overrun of critical tasks as the indicator
of mode switch requirement. A controller may only be able to
ensure system safety in most states with a lower reaction time
than is required in some other states. For example, finding a
single timing bound for the system in Fig. 1 will result in a
value lower than is required for most scenarios, limiting the
time available to perform other tasks on the same system.
Contribution. We propose an MC system where the criticality
source is the variations in environmental states. Hence, we
propose using multiple timing bounds that are determined by
environmental properties and the overall system state. Specif-
ically, the system should use one timing bound for scheduling
the system tasks during normal operation and then identify
another set of timing bounds for extreme/emergency scenarios,
with the goal of reducing the system reaction time to allow it to



reach a safe state. By formally modeling the physical system,
controller, and environment, we can identify situations where
temporarily reducing the reaction time allows the system
to recover safely. We show that this system of scheduler
mode switching can be combined with a Simplex [3], [4]-
like system, where the system switches to a known-reliable
controller when a potentially unreliable controller places the
system in an unsafe state.

We demonstrate our proposed MC framework on an
F1Tenth [5] car, as it allows us to demonstrate real-world
algorithms and software on a small-scale system and is com-
monly used for research in path planning [6], perception [7],
and control [8]. By using a formal model of the car’s driving
behavior, a racetrack environment, and two controllers, we
find a lower reaction time bound that allows the car to safely
navigate a racetrack. We then find a second higher timing
bound that allows the car to drive in most scenarios but
crashes in narrow spaces and around corners. We show by
determining when the system is entering one of these unsafe
states, switching to the lower timing bound allows the system
to return to a safe state.

To implement scheduler mode switching on a realistic
system, we create a custom ROS 2 executor that runs tasks
with the earliest deadline first (EDF) scheduler and supports
changing the task parameters at runtime. We also add support
for full preemption, which is not included in the default ROS 2
system, adding more flexibility in the tasks that can be run.
By implementing scheduler mode switching in ROS 2 and
demonstrating that environmentally-driven mode switches can
keep an F1Tenth car from crashing, we show that this system
is applicable to real-world software and hardware.

Using scheduler mode switching and our modified preempt-
able ROS 2 executor along with a reinforcement learning-
based track centerline estimator, a path following controller,
and a follow-the-gap controller, we find that scheduler mode
switching can keep the car from crashing in a varying envi-
ronment, maintaining high average quality of service. Without
the scheduler mode switch, the system would always have to
run with a lower reaction time by either removing some tasks
entirely or reducing the system utilization.
Organization. First, in Sec. II, we use a simple system to
demonstrate where a change in the system state or environ-
ment can result in a different event reaction time bound. In
Sec. III, we introduce our formal modeling approach and
components used in verification. We describe the task and
scheduler parameters, as well as the controller, physics, and
environmental models that describe the physical system. We
describe the concept of event reaction time, and how it differs
from latency. We show the steps used to find the scenarios in
which the system can fail if it were to use a higher timing
bound, and how to use the scheduler model to find a task
configuration that allows the system to meet the lower timing
bound. Then, we describe the end-to-end verification approach
using UPPAAL [9] that verifies that switching scheduler modes
ensures safe behavior. In Sec. IV, we give details on our
implementation of the system on an F1Tenth car and ROS 2,
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Fig. 2: Example simulation of the ball-and-paddle system with
a changing H. The period of the sensor and paddle change
to adapt to the decreased H, allowing the system to keep the
ball under the limit.

showing that the system can be used on real world hardware
and software. In Sec. V, we outline the models used to repre-
sent the system components, including scheduling properties
of the Preemptive EDF scheduler and physical behavior of the
F1Tenth car. Finally, in Sec. VI, we show the taskset properties
as found by the scheduling model, and how the implementation
performed on the physical system.

II. MOTIVATING EXAMPLE

Before introducing the formal problem formulation, we
present a motivating example related to an MC system, where
system criticality levels shift in response to environmental
feedback, illustrated by the classical bouncing ball problem.

Consider a simple system consisting of a ball, a ground
surface, a robotic paddle, and a sensor. A height limit, H, is
defined. The ball is initially thrown downward from a height
h0 < H toward the ground surface. With no intervention, the
ball may bounce off the ground and reach or exceed H. Due
to changing external conditions, H may vary over time. The
sensor periodically reports the ball’s position and velocity,
along with the current value of H. To keep the ball below
H, the robotic paddle can redirect the ball downward at any
point during its travel. The sensor and paddle are controlled
by a computer system and managed by a software scheduler.
Both sensor data processing and arm actuation are periodic
tasks. When executed, the sensor task reads the ball’s position
and velocity. If the ball is traveling upward, it predicts the
maximum height the ball will reach on this bounce and the
time remaining until it reaches the height limit. The paddle
task reads the remaining time provided by the sensor task. If
the ball is predicted to exceed H before the next scheduled
paddle task, the paddle strikes the ball, redirecting it back
toward the ground.

The system’s ability to consistently keep the ball below
the height limit H depends on the ball’s initial velocity and
position, the periods of the sensor and paddle tasks, and the
range of H. Additionally, if other tasks are running under the
same scheduler, the sensor and paddle tasks may experience
additional latency due to competition for processing time. The
event reaction times of the sensor and paddle tasks depend on



the response times of each task, the scheduler state, and the
presence of other tasks in the system.

For a range of starting positions and velocities, the system
safety property—defined as the ability to keep the ball below
the height limit—can be evaluated and verified for a specific
configuration by modeling the system and performing safety
queries. It is necessary to verify the system’s safety rather
than rely on a single trial run, given the range of starting
configurations for the ball’s position and velocity, the different
combinations of possible latencies, and the uncertainty in
sensor measurements. Formal methods, including symbolic
and stochastic model checking as well as deductive verification
techniques, can be used to ensure that the system operates
safely within the specified range of conditions.

While the system’s safety depends on the range of factors
discussed above, it is particularly sensitive to the H parameter.
If H is lowered, the required reaction time from sensing to
paddle actuation is decreased. The paddle task depends on
the height and time estimates generated by the sensor task,
which are only produced if the sensor task detects the ball
traveling upward. For even lower values of H, the sensor
task’s period may be insufficient to capture the ball’s upward
movement before it reaches the limit. Therefore, the system’s
required reaction time is governed by the environmental input
H. To ensure that the sensor and paddle can always react
in time, their reaction times can be adjusted by modifying
scheduling parameters—such as increasing priorities or reduc-
ing periods—or by dropping non-critical tasks in the system.

While previous work has introduced systems capable of
dynamically adjusting task scheduling properties at runtime
in response to changes in execution times, we extend this
capability to adapt to changing environmental conditions. This
is where the MC framework becomes particularly valuable.

The MC framework allows implementers to assume opti-
mistic execution times for some tasks under normal conditions.
If a critical task exceeds its optimistic execution time, the
system responds by increasing the deadlines of other tasks to
ensure the critical task meets its deadline. Typically, mixed-
criticality scheduling assigns two WCETs to each task: LO and
HI. The LO value represents an optimistic estimation, while
the HI value provides a more conservative upper bound. The
scheduler operates under LO execution times during normal
conditions. However, if a task exceeds its LO execution budget,
the system switches to HI mode, where tasks are scheduled us-
ing their HI execution times. To maintain schedulability under
HI execution times, the scheduler can drop or deprioritize tasks
deemed less critical by the system designer.

In the context of our motivating example, the paddle task
corresponds to a high-criticality task, as its timely execution
is essential to maintain system safety by preventing the ball
from exceeding the height limit. Extending these concepts to
our intended system, the F1Tenth platform, similar criticality
distinctions can be applied to tasks like obstacle detection
and control. For example, navigating sharp turns may demand
high-criticality scheduling, while operating on straight paths
could utilize lower-criticality modes. By leveraging the MC

framework, we aim to dynamically adjust task parameters
to balance performance and safety in real-world, high-speed
environments.

III. PROPOSED VERIFICATION FRAMEWORK

To support physics-informed mixed-criticality in a system,
we propose a formal modeling framework to determine the
necessary parameters for safe and efficient operation. These
models enable us to identify critical physical states that require
a lower reaction time and to select appropriate parameters for
scheduler mode switching based on environmental conditions.

A. System Model

Our system model, M := {MW ,MS ,MC ,MP }, con-
sists of a workload model MW , a scheduler model MS ,
a controller model MC , and a physical model MP . The
relationships among these components are illustrated in Fig. 3.
To ensure safety, we verify that the model M operating in
an environment E satisfies (⊨) a property P , or M∥E ⊨ P ,
where M and E are composed in parallel and P is a system-
level property.

In our implementation, M represents an F1Tenth racing
car, E represents obstacles and other geometric features like
the racetrack, which may be time-varying, and P defines a
safety property, such as collision avoidance.
Workload Model (MW ) consists of a set of n independent
periodic tasks Γ = {τ1, τ2, . . . , τn} on a uniprocessor system.
For the scheduler model MS to accurately determine worst-
case latency, Γ should include all tasks in the system that could
impact the timing of controller execution, even if they do not
directly influence the controller’s computed values. Each task
is represented as τi = (C, TLO, THI, DLO, DHI, χ), where C
is the worst-case execution time (WCET), TLO and THI are
the periods in low and high modes, DLO and DHI are the
deadlines in low and high modes, and χ denotes the task’s
criticality, The criticality flag χ indicates whether a task should
be dropped in high mode.
Scheduler Model (MS) models the behavior of the scheduler
used in the system to schedule the workloads in the underly-
ing hardware platform. Scheduling policies could be directly
implemented in operating systems (e.g., RTOS, RTLinux) or
using middleware such as ROS 2, and AUTOSAR [10] for
better composability and modularity in complex autonomous
systems. Scheduler model MS precisely models the schedul-
ing policies interacting with the workload model to safely
compute the worst-case latencies for the workloads used in
the system. It is essential to validate the functionality of the
model before use to ensure that all necessary properties of the
scheduler are correctly modeled in the scheduler model.

The scheduler is a preemptive EDF (earliest-deadline-first)
scheduler, where (depending on the current system mode)
tasks are scheduled by absolute deadlines governed by either
DLO or DHI. The scheduler supports changing the parameters
of tasks at runtime. These changes, known as mode switches,
are triggered via a signal sent by some task in the system, or
from an external source. Mode switches are processed during
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Fig. 3: End-to-end verification framework. The timing model (on the right) uses the system workload, scheduler policy, and
mode-switch decisions from the driving task to determine the end-to-end latency of the system tasks, both before and after a
mode switch. The driving tasks in the controller model run according to latencies calculated by the scheduler model and read
values from the physics model and environment. The controller tasks provide control inputs by writing to the physics model,
moving it through the environment. The safety check, one of the driving tasks, reads the output of the centerline estimator,
along with the vehicle and environment state, to determine whether a mode switch is necessary. The driving tasks are delayed
based on the latency values determined by the timing model and the selected mode. The scheduler supports full preemption,
and since the driving tasks share an absolute deadline, they can be represented as a single task.

the earliest idle instances—times when no tasks are queued
and running—after the mode switch signal. We impose this
limitation to add flexibility to mode switches. If a mode switch
decreased the absolute deadline of a queued or running job,
the job may become unschedulable. Furthermore, stopping a
currently running job if the task were dropped during a mode
switch could cause the system to enter an invalid state, and
complicate the design of the system tasks. Delaying mode
switches to the next idle instance solves these two problems,
at the expense of a potentially long delay between the mode
switch request, and its completion. To aid design, the scheduler
model calculates the longest possible delay.

If the scheduler is in low mode and receives the switch
signal, the scheduler switches to its high mode. This changes
the periods and deadlines of all tasks to reflect the current
mode. If the system is switching from low to high, all tasks
are scheduling using their THI and DHI values. If the χ flag
for a task is not set, the task is dropped. After some time, the
scheduler can receive another signal to return to LO mode,
which causes new tasks to be scheduled with their TLO and
DLO values. Any tasks with their χ flag not set are added
back to the system.

Controller model (MC) defines an algorithm that reads state
values from the Environment model (E), and outputs values
that affect the Physics model (MP ), with the goal of meeting
the property P . The controller has a latency value, which is
the time between its release time and the completion of its
execution, and also a reaction time, which is the maximum it
can take to react to an event in the environment. The controller
observes the state of the environment at the beginning of
its execution, and outputs a control signal at the end, which
is applied to the physics model. The controller model does
not simulate the scheduler, nor does it determine the latency

value—instead, the latency is computed separately in MS ,
where one of the tasks in Γ represents the controller model.
During verification, the controller model uses the timing prop-
erties generated by the scheduler model. The controller model
selects the appropriate parameters during mode switches, and
also simulates the potential delay between the mode switch
request and the mode switch application.
Physics Model (MP ) is user-provided, and its functionality
is validated independently. The physics model describes how
the physical system moves through and interacts with the
environment over time. The physics model may be defined by
differential equations that describe the motion of objects. The
physics model should expose parameters that can be controlled
from the controller model MC .
Environment Model (E) defines the scenario within which
the physics model operates. The environment model exposes
state variables that can be read by the controller model as
input. The environment model may also abstract some of the
sensing processes that would happen on a real physical system,
such as localization or object detection, into simpler tasks. We
assume the environment model is known a priori.

B. End-to-End Verification

We first define a task response time, an event reaction time,
and the system modes for mixed-criticality scheduling.

Definition 1. (Task Response Time) The task response time,
or latency, is the amount of time between a task being
released (becomes allowed to run) and completing execution
(producing a result and yielding to the scheduler).

Assume an autonomous system with a time-driven driving
task that polls a sensor value, performs some computation
and outputs a new control value. If an event happens just
before the task job begins, it will be recognized by the job
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Fig. 4: Event Reaction Time: The upward blue arrow means
the release instant of a job, and the downward red arrow
means the completion time instant of a job. Task j has a period
of 100ms and an execution time of 50ms. Due to interference
from other tasks, it can be blocked for up to 30ms. If an event
occurs after jt is released, but before jt begins execution and
polls the sensors, the state change in the environment caused
by the event will be captured by jt, and a response will occur
before the end of the period (Fig. a). If the event occurs after
jt polls the sensors, then the next instance, jt+1 will respond
to the event (Fig. b).

and handled by the end of the execution time. If the event
occurs just after the job begins and the sensor is polled, it
will not be recognized by this job - only the next job instance
will react to it. Therefore, the maximum event reaction time
in a system is the maximum amount of time between job jt−1

begins execution and jt completes execution.

Definition 2. (Event Reaction Time) The reaction time is
the amount of time between some event occurring in the
environment, and the system recognizing and responding to the
event. In an autonomous driving system, this would be time
between an obstacle entering the range of the sensors, and
the system responding by decelerating or changing direction.
The reaction time of a task is affected by the period, execution
time, and blocking time. This is distinct from response time in
that it reflects how quickly the system responds to physical
events, not timing events. When we refer to a task’s reaction
time, we are referring to the event reaction time of that task.

Definition 3. (System Modes) The scheduler must expose con-
figuration parameters that change the scheduling parameters
of each task. A set of parameters is referred to as a mode.
For a dual-critical system, the scheduler may have the option
to run the driving task at a longer period (and therefore a
lower frequency), allowing all tasks in the system to run.
We can refer to this behavior as the system’s low mode. In
the system’s high mode, the scheduler could run the driving
task with a shorter period (a higher frequency) to react to
environment events sooner. Since running the driver task more
frequently increases the utilization of the system, the scheduler
may increase the period of some less-important tasks, and
even drop some unnecessary tasks. Even if the system can run
all tasks in the high mode, dropping some tasks will still be
beneficial as the response time (and therefore reaction time)
of the driving task will decrease.

System modes allow the scheduler to adapt task execution to
changing environmental conditions, ensuring that the critical

tasks can meet physically imposed reaction time requirements.

Using formal methods, we can determine the control sys-
tem’s worst-case response time, required reaction time, and the
proper system mode for acceptable reaction time to operate
safely. The design and verification steps are as follows:

• Step 1: Derive the models that represent the system com-
ponents. The timing model (i.e., workload and scheduling
model) will represent the scheduler for the system, and
determine its timing properties, including the worst-case
reaction times of the control task. The environment model
describes where the physical system will operate, and
should expose values to be read as sensor inputs in the
controller model. The controller model should describe
the tasks required to manipulate the physical system
to achieve the objective and also use the input signals
to determine whether a mode switch is necessary. The
physical system model should be derived from system
dynamics [11].

• Step 2: Use the physics, controller, and environment
models to find scenarios where the system can fail. It
may not be possible for a given controller to succeed
in all situations, so the environment models must be
constrained to represent situations in which the physical
system will be deployed.

• Step 3: Find a reaction time and latency that allow the
system to perform safely in as many of the previous
scenarios as possible. If there are scenarios where a
lower reaction time and latency can not guarantee system
performance, adjustments to the controller are required
(A Simplex controller design could switch to a safer
controller if the system is approaching these states). For
the states that can be avoided with a lower reaction time
and latency, determine a mode-switching criteria to detect
these states.

• Step 4: Use the scheduling model to find appropriate
values for T , D, and χ that provide the required reaction
time for the driving task. In the low mode, all tasks in the
system should run with a high enough period to support
their required functionality, but in high mode, some tasks
may have reduced frequencies (higher T and D values)
or may not run at all. For each set of parameters, the
scheduling model finds reaction times for the driving task
during low and high modes, as well as the time required
to switch between the modes.

• Step 5: Use the physics, controller, and environment
models, with the timing values found in the scheduler
model, to determine whether applying the mode switch
ensures system safety.

IV. IMPLEMENTATION

This section presents the implementation details outlining
the system specifications, centerline generation, controller
implementation, and scheduler implementation1.

1Our implementation source files are available at https://github.com/
RTIS-Lab/ROS-Phys-MC

https://github.com/RTIS-Lab/ROS-Phys-MC
https://github.com/RTIS-Lab/ROS-Phys-MC


Fig. 5: Illustration of centerline model training process. The
back point is the car’s position, and the arrow represents the
car’s direction. The blue points represent the LiDAR scan,
which provides a partial view of the track borders. The green
points are the points generated by the centerline model. The
background color represents the distance transform of the
map, which is used to calculate the training rewards. Each
output point is scored by the value in the distance transform
at that point. Areas inside the track, marked in gray, have
negative values, and points outside the track, marked in red,
have positive values. The model is scored by the sum of the
point scores. We add a penalty for extreme curvatures. By
training the model to maximize reward, the model learns to
place points on the centerline that the car can follow.

A. System Specifications

Our system is an F1Tenth [5] car running ROS 2 on an
Nvidia Jetson Xavier AGX. The car is equipped with a LiDAR
sensor to detect obstacles and track borders. Our driving code,
the LiDAR interface, and motor control drivers all run on
ROS 2. We restrict the ROS 2 executor and the callback threads
to run on a single CPU core, and fix the clock frequency to
2265 MHz. We use the GPU for centerline model inference.

B. Centerline Generation

We trained a neural network model using reinforcement
learning to estimate the position of the track centerline relative
to the car. We split the LiDAR scan into 30 segments, take the
minimum and mean distance of each segment, and use these
as the model inputs. The network has two fully-connected
layers of 256 neurons each. The output is 8 evenly spaced
points representing the two meters of centerline ahead of the
car. We used Soft Actor-Critic [12] to train the model on a
mix of scans from our physical track, and some tracks traced
from real-world racetracks [13]. The training process places
the vehicle at random points and orientations on the track.
The model proposes 8 yaw values that control the relative
direction from each point to the next. We apply a distance
transform on the map, where points on the map farther from
the nearest obstacle have higher values. The model is rewarded
with the values of the distance transform at each generated
point. This encourages the model to find points that track
the centerline of the track. The training environments for the
centerline estimator did not include obstacles, but when faced

with convex obstacles, usually generates paths that avoid them.
We show an example of a LiDAR scan, generated centerline,
and the distance transform used for centerline model training
in Fig. 5.

C. Controller Implementation

We use two controllers to drive the car: a center-line
following controller that attempts to follow an estimate of the
track’s centerline, and a follow-the-gap controller that drives
towards the farthest visible and reachable space.
Center-line Following Controller. The centerline-following
controller uses the predicted centerline and treats it as a pure
pursuit driving line [14]. Using the car’s heading and speed,
it picks a point on the centerline and sets the steering angle
to a value that will drive the car in that direction.
Follow-the-Gap Controller. The follow-the-gap controller
uses the LiDAR scan to find the farthest reachable space
that can be reached by driving in a straight line. A point is
considered reachable if no visible obstacle is within some n
units. This controller does not guarantee progress along the
track, but assumes convex obstacles and a uniform track width
to prevent crashing into static obstacles.
Safety Checking. Using the LiDAR scan, we can test whether
driving on the generated centerline will cause a collision—if
the generated centerline is within some distance of any point
observed by the LiDAR, then the centerline is unsafe to use.
The opposite is not true—a centerline that does not intersect
with observed LiDAR points is not guaranteed to be a safe
path. If the car gets close enough to an obstacle that it is in
danger of crashing, the controller will issue an emergency stop
command.

D. Scheduler Implementation: Making ROS 2 Preemptive
EDF

We use fully preemptive EDF scheduling, a widely adopted
approach for real-time systems. Sensing and actuation tasks
are implemented as ROS 2 callbacks, which are selected and
run by an executor. In ROS 2, callbacks can originate from
various sources: Timer callbacks are triggered by a periodic
timer, Subscriber callbacks activate in response to incoming
messages, and so on. Callbacks of any type can send messages
over topics, which can be subscribed to by Subscribers. The
default ROS 2 executor schedules tasks non-preemptively,
and callback priorities are set by a combination of registra-
tion order and callback type [15]. In order to apply mixed-
criticality scheduling to this system, we create a modified
ROS 2 executor that runs callbacks in separate threads. Each
callback has a unique thread, and each thread uses Linux’s
SCHED_DEADLINE scheduling class. Rather than executing
callbacks directly, the executor passes a reference of the source
event (eg. a timer or subscriber) to the respective thread.

To simplify the implementation, we require that Callbacks
must not be in reentrant callback groups. Reentrant callback
groups allow multiple instances of the same callback to be
simultaneously. Since each callback has a dedicated thread,
only one instance of a callback can run at a time. We also



Algorithm 1: Preemptive EDF Executor Callback Dis-
patch

1 while rclcpp::ok() do
2 wait for work();
3 sched mutex.lock();
4 next executable ← get next executable();
5 if next executable == nullptr then
6 if mode switch flag changed and

!any running(thread) then
7 modeswitch();
8 end
9 continue;

10 end
11 if !next executable.group.can take() then
12 continue;
13 end
14 this thread ← threads[next executable];
15 if this thread = nullptr then

/* first time this callback has been
run */

16 this thread ← new Callback-
Thread(getPropertiesForCB(next executable));

17 sched setattr(this thread, SCHED DEADLINE,
next executable.sched params[mode]);

18 end
19 if this thread.running then

/* one of the constraints has been
broken - all callbacks should be
non-reentrant */

20 warn();
21 return;
22 end
23 this thread.executable ← next executable;
24 this thread.running ← true;

/* thread will handle retrieving data
*/

25 this thread.semaphore.release();
26 sched mutex.unlock();
27 end

Algorithm 2: Callback Threads
1 while rclcpp::ok() do
2 sem.acquire();
3 if !executable.group.can take() then
4 continue;
5 end
6 execute executable(executable);
7 executable.group.reset();
8 running ← false;
9 end

require that only one publisher can publish to a topic in a
single period.

To run callback instances in their own threads, we create
a mapping of callbacks to threads. Initially, the mapping is
empty. Whenever a callback becomes eligible, the executor
checks whether a thread has been created for the callback.
If not, it creates a new thread, sets its scheduling class to
SCHED_DEADLINE, sets the period, runtime, and deadline
parameters, and passes the callback information to the thread.
The executor adds the thread to the callback→thread mapping
and moves on to the next eligible callback. If a thread already
exists, and the thread is running another job from that callback,

Algorithm 3: Mode Switch
/* assumes nothing is running */

1 for thread in threads do
2 params = all params[thread.callback][mode];
3 sched setattr(thread, SCHED DEADLINE, params);

/* also set the timer period */
4 if thread.callback is TIMER then
5 thread.callback.period ← params.period;
6 end
7 end

then some restrictions were violated (the callback missed a
deadline, or multiple callbacks were published to the same
topic). In this case, the executor will leave the callback in the
queue. If the thread has been completed, then the executor
passes the new callback data to the thread, which will run
when it is selected by the kernel scheduler.

In ROS 2, timer and subscriber callbacks can be combined
to create time-driven processing chains. In this model, each
processing chain is driven by a single-timer callback, and
all callbacks in the chain share an absolute deadline. When
running under a normal ROS 2 executor, each callback in the
chain serves as a preemption point. In our modified executor,
callbacks can be preempted at any point, so to simplify the
analysis, each callback chain is abstracted into a single task.

V. MODELING AND VERIFICATION

We use UPPAAL models to verify the scheduling policy,
mode switching, and physical system behavior.

A. Modeling

Our scheduling model uses an EDF scheduler with full
preemption, adapted from the SchedulingFramework ex-
ample provided by UPPAAL. We incorporate the possibility of
a mode switch, which can be requested at any time. The mode
switch can add or remove tasks and adjust task periods or
deadlines. It is applied at the next idle instant of the scheduler.
We introduce a verification query to determine the maximum
time between any two idle instances. If this time is excessively
long or unbounded, it indicates that waiting for an idle instant
to perform a mode switch could delay the switch beyond
acceptable limits.

The scheduler employs two templates, outlined in Model 1
and Model 2.

The scheduler model represents the behavior of an EDF
scheduler. It remains in the idle state until some task emits
a ready synchronization, upon which it adds the task to the
queue. insertTask checks the absolute deadline of the task, and
places it the appropriate queue position. Tasks with the same
absolute deadline are sorted non-deterministically - either task
could be run before the other. Once a task is placed in the
queue, the scheduler switches to its InUse state. Any newly
released tasks are placed in the queue. When the running task
is completed, it is removed from the queue. Once the queue is
depleted (empty()=true), the scheduler moves back to its Idle
state, and sets the time between idle clock to 0. By allowing
time between idle to tick at the InUse state, the supremum



Model 1: EDF Executor
1 while true do
2 State Idle Initial
3 time between idle′ = 0;

/* emit when a task becomes
ready */

4 Synchronization ready?
5 insertTask(readyTask);
6 go to InUse;

/* Some task is running */
7 State InUse

/* Task at head of queue
completed */

8 Synchronization finished
/* Removes the head */

9 removeTask();
10 if empty() then
11 time between idle := 0;
12 go to Idle;

/* Otherwise, the queue isn’t
empty. The task at the head
is now running */

13 Synchronization ready?
14 insertTask(readyTask);
15 time between idle′ = 1;
16 end

of time between idle at InUse represents the maximum time
between scheduler idle instances.

The task model represents tasks running under the EDF
scheduler. Tasks begin in the PeriodDone state, where the time
clock counts towards period(). Once a period has passed, the
task emits ready!, causing the scheduler to add it to the queue,
and move to the PreReady state. The x clock increments only
when the task is running, which is when the task is at the
front of the queue. If some other task takes its place, x will
not increment. Once the task has run for at least one-time unit
(x=1), it copies reaction time to event reaction time, resets
reaction time, and moves to Ready. In both the PreReady and
Ready states, if the time ever exceeds the deadline, then the
task enters the error state. x evolves in the same way as it
did in PreReady. Once the task has been run for its execution
time, it removes itself from the queue by emitting finished!
and moves to the PeriodDone state.

To understand the roles of reaction time and
event reaction time, remember that the worst-case response
time of a task is the maximum amount of time between
a job beginning execution (where sensors are polled), and
the completion (where control outputs are sent) of the next
job. The PreReady state is designed to indicate whether the
task has been run at all by the scheduler since the task has
been released. Once the task has at least begun execution,
reaction time, which was set at the last time the task began,
is copied to event reaction time, and reset back to 1 (since
the task has run for 1 time unit, the smallest time length
in this model). By the time the task exits the Ready state,

Model 2: Task
1 State PeriodDone Initial
2 x′ = 0 && time ≤ period();
3 if time ≥ period() then
4 x = 0;
5 time = 0;
6 readyTask = id;
7 emit ready!;
8 go to PreReady;
9 end

10 State PreReady
11 x′ = isRunning() && x ≤ 1;
12 if x = 1 then
13 event reaction time := reaction time;
14 reaction time = 1;
15 go to Ready;
16 end
17 if time > deadline() then
18 go to deadline error;
19 end
20 State Ready
21 x′ = isRunning() && x ≤ WCET();
22 if x ≥ WCET() then
23 emit finished!;
24 go to PeriodDone;
25 end
26 if time > deadline() then
27 go to deadline error;
28 end

event reaction time will include all the time passed since the
last job began and the time this job completed. By finding
the supremum of event reaction time at Ready, we can find
the worst-case reaction time of a task.

A mode switch signal comes from the driving task. To
prevent a mode switch from placing the system in an invalid
state, the mode switch flag is only checked when all callback
threads are idle - which means that no callbacks are running
and the scheduler is idle. While can cause a mode switch to
happen sometime after the switch was requested, this allows
greater flexibility in what actions can be taken during a mode
switch. If a deadline were shortened while a callback is
queued or running, the new absolute deadline could be in
the past, causing a deadline miss. Additionally, if a callback
were dropped, the executor would not have to stop an in-
progress thread. For tasksets with a very long time between
scheduler idle periods, or tasksets where the scheduler is never
idle, the scheduler would have to be modified to apply a
mode switch while some tasks are running, complicating the
implementation and analysis.

The vehicle model is implemented with 5 states such as x
position, y position, yaw, velocity, and steering angle, each
governed by an ODE [16]. The x and y states evolve using
the velocity and steering angle: ṡx = v cos(Ψ), ṡy = v sin(Ψ),
and the yaw evolves using the steering angle: Ψ̇ = v

lwb
tan(δ).

The longitudinal velocity v can be changed with the throttle



input, and the steering angle δ moves to match the input
steering angle. LiDAR inputs are generated using the scan
simulator from [5]. We use the FFI2 feature in UPPAAL to call
our prediction and driving code, which uses the LiDAR scan
to predict the centerline, make a safety evaluation, and make a
control decision. The safety evaluation and control inputs are
passed back to UPPAAL, which updates the physics model.
Delays built into the controller model use values computed
by the full scheduler to simulate the sample times and output
times of the driving task. Since the values computed by the
full scheduler include the effects of other tasks in the system
on the driver, the controller model only needs to simulate the
driver. When the safety evaluation determines the need for
a mode switch, a flag is set. After some delay (up to the
idle time gap found by the scheduler model), the appropriate
values (either the high or low set) are copied to the delays
representing blocking and runtime.

B. Verification

Using these models, the properties of the taskset under the
EDF scheduler can be determined using UPPAAL symbolic
queries:

• A[] forall (i : tasks) not
Task(i).Error: This determines whether all
deadlines will be met. Tasks go to the Error state
whenever the absolute deadline has passed and the
current job has not yet finished.

• supTask(i).Ready: time[i]: For a specific task i,
this finds the worst-case latency by finding the supremum
of a time[i] at Ready.

• supTask(i).Ready: event_reaction_time[i]:
For a specific task i, this determines the worst-
case reaction time by finding the supremum of
event reaction time at Ready. The event reaction time
value records the time between the beginning of a job jt
and the completion of the next job jt+1.

• supTask(i).Ready: reaction_time[i]: Deter-
mines the maximum possible time between the first
instance of job j executing (when sensors are polled) to
the last instance of j executing (when control outputs are
sent). This value represents data freshness.

• sup: time_between_idle: Finds the maximum
time that can pass between times when the scheduler
is idle. Mode switches are queued until an idle instant
occurs.

To find the probability of a crash in the system, we use
the following query: Pr[< T ;N] (⋄ crashed). T is the
maximum time for a single episode, and N is an optional
value to limit the number of episodes tested by UPPAAL.

VI. EVALUATION

We use the taskset shown in Table I. The relative deadline is
always equal to the period for the respective mode. Using the

2Foreign Function Interface - this allows UPPAAL to call code written in
other languages and receive a response. This enables us to use the same code
both on the real system and the verification process.

Fig. 6: Red dots are crash locations on one map when running
in low mode, without any mode switches. These are locations
where using different scheduler mode to reduce reaction time
may allow the vehicle to safely navigate the track.

Task Name C TLO THI χ LO Resp LO React HI Resp HI React
Driver 15 100 25 1 94 170 16 41
Health 1 25 25 1 19 44 16 41
Dummy0 21 40 80 1 34 74 69 149
Dummy1 8 30 0 24 52

TABLE I: LO Resp and HI Resp are the task response times
in low and high modes. LO React and HI React are the low
and high mode reaction-times of each task. The Driving task
is responsible for polling the sensors, computing an action,
checking the safety of the current state, and writing a control
action. Health is responsible for polling the state of the joystick
(used to start/stop the car), as well as checking whether the
Driving task has output a control signal in the past 200
ms. Dummy0 and Dummy1 add additional interference to the
Driving task.

scheduler and task model, we find the latencies and reaction
times for each task in both low and high modes.

To determine the high and χ parameters for this system, we
used the scheduler and task models to determine the latency
and reaction time parameters for the driving task, and applied
these to the controller model. Using the controller, physics,
and environment models, we found that the controller needed
a 45ms reaction time to safely navigate a track.

To achieve the required reaction time, we shortened3 the
period of the driving task to 25 ms, which increases the system
utilization to 1.432. To make the system schedulable again, we
drop the Dummy1 task and increase the period of Dummy0 to
80. With these changes, utilization is 0.903, making the system
schedulable, and the worst-case reaction time of the Driver
task is 41 ms, satisfying the 45 ms reaction time requirement.

A. System Verification Results

Due to the large state space of the system, we use Statistical
Model Checking in UPPAAL. We set the car to start in random
positions and orientations on the track and use the query
Pr[≥ 20] (⋄ crashed) to find the probability of a crash

3The LiDAR sensor cannot be polled faster than 40 Hz, so shortening the
driving task period to any less than 25 ms would further increase the utilization
of the system for no extra benefit.
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Fig. 7: Timeline of task execution before and after a mode
switch. The mode switch, sent from the driver task, occurred
2 ms before the idle instance. As expected, the Dummy1 task
was dropped, and the period of the Dummy0 task was reduced.
After some time, the driver’s period decreased to the set 25 ms.
Due to limitations in how ROS 2 handles changes in Timer
periods, it takes one period from the previous mode for the
new period to apply.

happening in a single run. We set the episode length limit to 20
seconds - enough to complete two laps. With mode switching
enabled, UPPAAL reports the chance of a crash having to be
in the interval of [0.0024, 0.03397] with a confidence interval
of 95%. With mode switching disabled, the window becomes
[0.4771, 0.6780]. This shows that performing a scheduler mode
switch that reduces the reaction time of the critical task
drastically reduces the chances of a crash.

B. Physical System Results

We ran the taskset with our EDF ROS 2 executor on the
F1Tenth platform on a straight track with barriers placed in the
sides and middle that make the track narrower and require the
car to turn in order to continue safely. We place the car at the
end of the track and allow it to drive towards the barriers. We
tested the system with mode switching enabled and disabled.
When driving in empty sections of the hallway, the car stays
in low mode, since the centerline predictor can easily track
the center of the hallway, and provides a relatively stationary
target for the line-following driver. Even with a straightforward
path, in low mode, the reaction time of the Driver task is
high enough that the car oscillates around the centerline.
The empty part of the track is wide enough that with the
oscillations, it still has room to recover. As the car approaches
the narrow section of the track, the predicted centerline is
closer to the observed track borders. If mode switching is
enabled, once the predicted centerline gets close enough to
the borders (0.5 m), the safety checker sets a flag. This flag
is received by the scheduler, which will perform a mode
switch to high at the next instant. Switching to high causes the
scheduler to drop Dummy1, increases the period of Dummy0,
and shorten the period of Driver. These changes significantly
reduce the reaction time of the Driver task, allowing the car

to accurately track the centerline without overshooting it. The
system remains in the high mode until the car and centerline
are both sufficiently far from any visible obstacle.

If mode switching is disabled, the car continues oscillating
around the centerline, putting it in danger of collisions.

Oftentimes, the centerline predictor is not able to output a
path that follows the centerline or even avoids obstacles. In this
case, changing the timing parameters is not enough to prevent
a crash. If the safety checker finds that the predicted centerline
intersects an obstacle visible to the LiDAR sensor or the car
itself is too close to an obstacle (0.5 m), the switch reduces
the throttle and switches to the ‘safe’ gap-following controller
until the predicted centerline and car state is safe. If the car
gets closer still to an obstacle (0.4 m), the safety checker sets
the throttle to 0, which brings the car to a stop. Both driver
algorithms and the emergency stop action are available to the
safety checker whether or not mode switching is enabled and
run as part of the Driver task. Like the line-following driver,
the gap-following driver and emergency stop are also sensitive
to latency and reaction time.

We ran the car through the track 20 times with mode
switching enabled and 20 times without. We consider the car
crashed if it collided with a barrier or track border. If the safety
checker stops the car, and the car comes to a stop without
colliding with anything, we consider this an emergency stop,
but not a collision. When the mode switching was enabled,
the car completed the track 17 times. 3 runs ended with
a safe emergency stop. No crashes occurred. Without mode
switching, (where the system stays in low mode), the car
crashed 4 times, and 3 runs ended with a safe emergency stop.
The car completed the track in the other 13 runs.

We collected metrics about the tasks’ runtime and reaction
times during the high and low modes, as well as the time taken
between a mode switch request, and a mode switch occurs. We
calculate the reaction times of the tasks on the physical system
in the same way as in the model - the difference between the
beginning of a job and the completion of the next job.

While the real workload closely mirrors the behavior pre-
dicted by the scheduler model, there were some differences
due to the implementation. Some tasks ran for slightly longer
than predicted, possibly due to scheduler, kernel, or preemp-
tion overheads. We used libtorch for inference in the driving
model, which, on rare occasions, ran longer than the 15 ms
bound we had set. There was a delay in applying new task
periods during a mode switch - tasks may wait for one period
before the new period is applied.

In low mode, the Driver task had a maximum reaction time
of 131 ms and a mean of 27 ms. With the exception of some
outliers, the Driver had reaction times under the predicted high
mode worst-case reaction time of 44 ms—in our experiments,
the mean reaction time was 27 ms with a standard deviation
of 10 ms. Dummy0 had a mean reaction time of 64 ms in
low mode, and 109 ms in high mode. Dummy1 had a mean
reaction time of 48 ms in low mode, and did not run at all in
high mode. The HealthCheck task had a mean reaction time
of 27 ms in low mode and 25 ms in high mode.
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Fig. 8: Observed reaction times from the physical system.
The reaction times of the driver times match the predicted
reaction times from the scheduling model. The other tasks
mostly match the predictions, but there exist some outliers that
exceed the expected reaction times, likely due to unaccounted
overhead such as preemption cost, mode-switch overhead,
underestimation of WCET, etc.

Most tasks had outliers in their reaction times that were
above the expected worst-case reaction times found in the
scheduling model. We believe these came from unaccounted-
for overheads from the scheduler and logging system.

VII. DISCUSSION

Our implementation and analysis assume a single-core exe-
cution environment with one sensor, where sensor process-
ing and actuation outputs are managed by a single chain.
While is is directly applicable for simple systems, real world
systems have many task and task chains running in parallel
on multiple CPU cores, and have multiple sensors, possibly
polled at different rates. In this section, we discuss how the
proposed framework can be extended to multi-core systems
with multiple sensors and processing chains.
Multiple Cores. For simplicity, we use a single-core system
in our case study example, but the models and ROS 2
implementation can be expanded to support multiple cores. To
further reduce the reaction times of the case study tasks, we
could place some task chains on different CPU cores, reducing
interference between tasks and reducing reaction times of task
chains.

To allow the use of multiple CPU cores for task execution,
the executor and models have to be adjusted to support multi-
core scheduling.

For EDF with a shared queue, the ROS 2 executor imple-
mentation could be modified to resemble the default multi-
threaded executor, where the callback selection process hap-
pens in each executor thread, and the queue is protected by a
mutex lock. Since ROS 2 natively supports triggering callbacks
between executors, partitioned EDF could be done by creating
multiple executors, and attaching tasks to the appropriate
executor.

With execution on multiple cores, there may be a long time
between instances where all cores are idle, if it exists at all.
We may have to support performing a mode switch even when
a task is currently executing—we leave this to future work.

The current UPPAAL model assumes that the task at the head
of the queue is currently executing. To support a shared queue
with multiple EDF executor threads, the executor model has
to be adjusted to remove their selected tasks from the queue or
otherwise mark them as currently executing so that multiple
executor threads do not erroneously attempt to run the same
task. For partitioned EDF, each EDF Executor model would
pull tasks from a different queue. Supporting parallel task
execution could significantly increase the search space during
model checking—we leave model checking time analysis to
future work.
Multiple Sensors. Multiple sensors can be polled in various
arrangements: within the same task, by different tasks within
the same chain, or independently across multiple chains. The
most trivial case is multiple sensors polled together on the
same task - each sensor is read at (almost) the exact same time,
and processed together. In this scenario, the implementation
and analysis remain the same. If sensors are polled and reacted
to at different times but within the same chain, then the chain
may have multiple different event reaction times - one for each
sensor input ↔ action output combination. In this case, the
model has to be adjusted to record and report each possibility.
Multiple Chains. The overall technique could be applied to
systems that are driven by multiple task chains, or where
multiple task chains have dynamic reaction time requirements.
The steps to determining the required event reaction time for
each chain and how the scheduler modes are managed (which
sensor inputs can trigger a mode switch, or how each chain
is affected by mode switches, or even the possibility of a
hierarchy of multiple modes) is dependent on the target system
and its architecture.

For example, consider the dummy chains in the case study
example. If each chain is polling and reacting to different
sensors, then it may be necessary to ensure that each chain
meets its required reaction times. To do so, multiple mode
switches may be needed - whenever a task chain detects that it
needs a lower reaction time according to its incoming sensor
data, it may instruct the scheduler to reduce the period or
priority of other task chains to meet the requirement. This
introduces new complexities, such as how to handle conflicting
requirements, or scenarios where one chain determines that the
response time requirement of another chain has changed.

VIII. RELATED WORK

Dual Controllers. Our proposed framework can be com-
pared with the Simplex architecture [3], [4]. In the Sim-
plex architecture, an unverified High-Performance Controller
(HPC) is paired with a safe High-Assurance Controller (HAC),
and includes a verified safe Monitoring and Decision Logic
(MDL). When the HPC’s control action risks leading the
system to an unrecoverable state—where the HPC can no
longer guarantee safety—the MDL automatically switches to



the HAC to maintain safety. The MDL may be verified or
validated through runtime reachability analysis or statistical
simulations. [17] used formal methods to identify unsafe state
space and showed that switching to a safe safe controller
allows their system to recover. [18] is a working progress
version of our framework.

Mixed-Criticality Systems. After Vestal’s seminal work on
Mixed-criticality (MC) systems [2], MC systems have been
heavily studied over the years. A rigorous survey on MC
systems can be found in [19]. The original MC model was
studied in various settings, including fixed-priority scheduling
(e.g., [2]) and dynamic-priority scheduling (e.g., [20], [21]).
There are many variations proposed over the years to handle
additional resource demand for high critical tasks in critical
systems mode (e.g., [22], [23], [24]). [25] generalized the
MC systems for both resource supply and execution time
uncertainties. However, most of these works are limited to
temporal overrun-based mode switch scenarios. Unlike the
existing works, our work presents a model that uses variations
in the environmental state to initiate the mode switch.

Formal Methods for CPS and F1Tenth Cars. In a recent
survey of autonomous systems and the challenges they pose,
Wing [26] asks how we can address scenarios that have life-
critical consequences for people and society, and suggests
that we require “new formal methods techniques” to do so.
With respect to autonomous ground vehicles in particular,
Kopylov et al. [27] verify a “safety net” for a waypoint
navigation controller using ModelPlex [28] to synthesize a
monitor using theorem proving. Lin et al. [29] extend the work
by combining theorem proving and reachability analysis with
Flow* [30] for synthesizing switching monitors. In the context
of F1Tenth vehicles, Ivanov et al. [31] verify the safety of a
neural network controller using their Verisig tool [32]. Vehicles
operate at constant throttle in a structured environment, and the
effect of missing LiDAR rays due to reflections is evaluated.
A systematic literature review on verification and validation
for safe autonomous cars is given by Rajabli et al. [33].
Soteria [34] presents a verification framework combining both
the timing and physical model of a system for a specific
operating environment.

ROS 2 and Schedulability Analysis. ROS 2 recently received
significant attention from the real-time systems community
after the pioneer work by Casini et al. [15]. Many works
(few to mention [35], [36], [37]) subsequently improved the
proposed worst-case latency bound of ROS 2 workloads and
also proposed modified executor schedulers [38], [39], [40].
However, to our knowledge, there is no exact analysis for
finding worst-case latency ROS 2 workloads. Formal methods
have the potential to find exact worst-case timing bound
(regardless of scalability issues) and were used in earlier works
for (exact) schedulability analysis for the standard workload
and resource models, e.g., exact worst-case response time
computing for DAG tasks [41], exact scheduling test for non-
preemptive self-suspending tasks [42], etc.

IX. CONCLUSIONS AND FUTURE WORK

We present a mixed-criticality model that uses environmen-
tal feedback to change the scheduling parameters of tasks
in the system with the purpose of meeting the physical and
environmentally required event reaction times. We use formal
modeling as a process to determine the required reaction times
and validate that the task parameters and system scheduler
can meet these reaction times. We use system and controller
models to verify the complete system behavior, showing that
using environmental feedback in scheduling decisions can
keep the system safe. Finally, we show an implementation of
this system on an F1Tenth car and ROS 2, demonstrating the
feasibility of physics-informed mixed-criticality scheduling on
a realistic system. In future work, we aim to develop rigorous
correctness proofs analytically for the verification framework
and mixed-criticality scheduling policies to ensure both safety
and efficiency in real-world applications.
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