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Abstract—Over the last decade, machine learning (ML) and
deep learning (DL) algorithms have significantly evolved and
been employed in diverse applications such as computer vision,
natural language processing, automated speech recognition, etc.
Real-time safety-critical embedded and IoT systems such as
autonomous driving systems, UAVs, drones, security robots, etc.,
heavily rely on ML/DL-based technologies, accelerated with the
improvement of hardware technologies. The cost of a dead-
line (required time constraint) missed by ML/DL algorithms
would be catastrophic in these safety-critical systems. However,
ML/DL algorithm-based applications have more concerns about
accuracy than strict time requirements. Accordingly, researchers
from the real-time systems community address the strict timing
requirements of ML/DL technologies to include in real-time
systems. This paper will rigorously explore the state-of-the-art
results emphasizing the strengths and weaknesses in ML/DL-
based scheduling techniques, accuracy vs. execution time trade-
off policies of ML algorithms, and security & privacy of learning-
based algorithms in real-time IoT systems.

Index Terms—Internet of Things, Machine learning, Deep
learning, Scheduling, Real-time systems.

I. INTRODUCTION

Real-time systems (RTS) design must have both functional
and temporal correctness [1], [2]. Thus, real-time systems
are traditionally designed with temporally predictable and
deterministic algorithms. For instance, before implementing an
online scheduler, the regular real-time scheduling algorithms
have to perform (exact or sufficient only) deterministic (finite
time) offline feasibility (also known as schedulability) tests [1].
However, the feasibility test of the scheduling algorithms be-
comes highly complicated (in most cases intractable) with the
underlying system heterogeneity and inter-and intra-dependent
tasks [3]. Hence, until recently, RTS was restricted to only
safety- and mission-critical systems such as avionics, space-
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craft, etc., with dedicated proprietary hardware platforms and
simple task models.

Nonetheless, with the revolution of embedded cyber-
physical systems and the internet of things (IoT) (thanks to the
rapid advancement of hardware, software, and communication
technologies) — RTS has been ubiquitously used in numerous
domains, including healthcare such as implantable devices,
transportation such as autonomous vehicles, smart-cities such
as smart grids, and industrial environments such as drone,
robots, etc. One fundamental similarity among these increas-
ingly complex cyber-physical systems is that the systems are
interacting with the physical world with excellent efficiency,
leveraging a large number of onboard sensors. Thus, the
systems require high computational resources to process the
vast amount of diverse data from onboard sensors.

The emerging applications of RTS pose a couple of chal-
lenges: a) it requires a heterogeneous hardware platform
consisting of CPUs (multi-core), GPUs, or specialized ac-
celerators [4], which complicate the resource-sharing models
of RTS. b) the task dependency forms task chains with
multiple arrival rates necessitates the complicated workload
models such as DAGs, GANG task models, etc. Scheduling
such a workload using a deterministic feasibility test upon a
heterogeneous hardware platform is tedious.

Consequently, the RTS community has become interested
in data-driven approaches to deal with many diverse data
sources in RTS applications over the last few years. Fortu-
nately, Machine learning (ML) and deep learning (e.g., deep
neural network (DNN)) have extensively progressed and are
employed in enormous applications unprecedentedly over the
last decade. So, machine learning in RTS, especially the
systems with lots of onboard sensors, has received significant
attention from research communities. Unfortunately, merging
these two prolific research domains poses several critical
challenges for their unparalleled goals. In general, the ML
research community prioritizes ML algorithms’ efficiency or
accuracy, while the temporal correctness of the algorithms has
significantly less importance. Besides, the behavior of ML
algorithms is not deterministic. In contrast, the algorithms’
deterministic behaviors and temporal correctness are critical
in RTS. So, before implementing ML algorithms in RTS,
thorough research in ML algorithms concerning the RTS
requirements are imperative.

Most emerging RTS devices, for example, autonomous
vehicles, drones, etc., interact with the physical world through
onboard sensors (e.g., cameras, radar, LiDAR, IMU, etc.).
Thus, there is a high chance of a vicious attack on physical
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sensors or sensor data-integrity/injection attack, eventually
damaging the ML model. Therefore, ML algorithms should
be malicious attack resilient and temporally deterministic to be
employed in RTS. Another concern in end-devices is that the
intellectual properties, such as the architecture or parameters of
the ML model, could be stolen through physically monitoring
system behaviors, for example, I/O data throughput, memory-
access patterns, EM signal spoofing, etc.

Contributions. In this literature survey paper, we rigorously
review the current research works on the cross-domain of
RTS and ML that addresses the technological adaptation
requirements mentioned above. We categorize the research
works into the following directions:

• Adaptation of ML algorithms in RTS — We review the
existing papers that address the challenges of adapting
ML algorithms in RTS, categorizing via algorithmic
techniques such as model compression (e.g., pruning,
quantization, knowledge distillation, etc.) and real-time
pipeline of ML algorithms.

• ML algorithms for schedulability analysis — We review
the papers that address the WCET estimation of real-time
workloads, analyze the schedulability of a given workload
for specific underlying hardware platforms guaranteeing
the real-time constraints, and predict the system behavior
(e.g., clairvoyance) through ML algorithms.

• Privacy and security in real-time system — We further
review the works related to the privacy and security of
RTS through deploying ML algorithms.

• Finally, we present several open problems and potential
applications of ML in the real-time system that are yet
to explore.

Throughout the paper, we discuss the strengths and weak-
nesses of proposed/developed solutions and point out the
research gap.

Organization. The rest of the paper is organized as follows.
Section II discusses the background of real-time systems,
specifically the concepts related to the scheduling of real-time
systems and the learning algorithms commonly/potentially
employed in real-time systems. Section III comprehensively
surveys the existing works on machine learning in real-time
IoTs. Section IV presents the applicability of machine learning
algorithms in real-time IoT systems. Section V points out
research gaps and proposes possible employment of machine
learning in real-time IoTs. Finally, the paper concludes in
Section VI.

II. BACKGROUND

In this section, we will briefly discuss the general proper-
ties of real-time IoT system workloads and commonly used
machine learning/deep learning algorithms in real-time IoT
systems.

A. Real-Time IoT Systems

Real-time IoT systems are implemented with a collection
of concurrent tasks in the underlying hardware resources. The
real-time system tasks (or workloads – we use these two terms

interchangeably) need to be scheduled in the available system
resources to meet the timing constraints (e.g., deadline and
worst-case execution-time (WCET), etc.) associated with each
task. Hence, the system designers need to construct a workload
model of the tasks characterizing the resources and timing
requirements of the tasks.

Scheduling problems of a formally described workload
model are traditionally tackled with scheduling algorithms
that guarantee both functional and temporal correctness of the
execution of the task set. The design of scheduling algorithms
depends on the real-time workload model. The real-time
workload models and corresponding scheduling techniques are
well explored in the community [2], [5], [6]. Generally, there
are three types of real-time workloads models based on the
release patterns of a task instance — periodic, sporadic, and
aperiodic tasks. According to Liu and Layland real-time task
model [2], a periodic task upon a uniprocessor system is a
task that releases its instances (jobs) after a specific time
period. In addition, it is assumed that each task can release
infinite instances during the runtime. Note that, depending on
the relation between deadline and period of a task, the task
can be classified as constraint-deadline (deadline less or equal
to period) or implicit-deadline (deadline is equal to period)
task.

In the sporadic task model, the jobs of the task can release
at any time, maintaining a minimum job separation time
(minimum separation time is also referred to as period for
sporadic model). A job of an aperiodic task can arrive at any
time, and there is no periodicity/minimum separation of jobs.
Also, the aperiodic task can be hard-aperiodic tasks where
the released job has a deadline. Furthermore, depending on
the inter-and intra dependency of the jobs, more sophisticated
workload models are developed, such as graph-based workload
models (DAGs, Digraph, etc., – a comprehensive survey on
graph workload models [6]), Gang models [7] etc.

The design of real-time scheduling algorithms has two key
steps — offline verification/certification and online schedul-
ing strategy. Most scheduling problems are known as NP-
Hard problems in a strong sense due to the complexity
(intractability) of the offline certification (schedulability test)
of scheduling algorithms. Therefore, the algorithms are typi-
cally designed with approximation and relaxation, maintain-
ing a sufficient only condition with a lesser (e.g., pseudo-
polynomial) time complexity of the schedulability test. The
scheduling algorithms are designed for two different types
of priority — static priority (task-level fixed priority), where
the priority of each task in the task set is fixed; and dy-
namic priority (job-level fixed priority), where the priority
of a task changes in each job instance depending on the
released jobs of other tasks available in the queue. Real-
time scheduling algorithms include preemptive (active task
instance can be interrupted by a newly released higher priority
task instance) or non-preemptive algorithms, such as Earliest
Deadline First (EDF) [5], Rate-Monotonic (RM) [2], and
Deadline-Monotonic (DM) [8], etc.

The workload scheduling complexity increases when up-
graded from uniprocessor to multiprocessor platform. How-
ever, the uniprocessor scheduling algorithms can still use
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in a multiprocessor system with substantially modification
techniques such as global scheduling, partitioned scheduling,
etc. [1]. Besides scheduling complexity, assessing the precise
WCET of the jobs is also complicated. In most cases, it
is very challenging to evaluate the exact WCET due to
either unavailability of the system architecture for intellectual
property reasons or the analysis complexity of deterministic
WCET. Therefore, the estimated WCET is very pessimistic
(often add a safety margin to the estimated WCETs), resulting
in poor system utilization.

In modern autonomous systems, the systems typically have
different criticality levels based on the systems’ safety re-
quirements. For instance, connected and autonomous vehicles
(CAVs) have several system criticality requirements following
the safety standards such as ISO26262 — the safety-criticality
levels such as anti-lock braking system, steering, engine
controller, should have higher priority than the infotainment
system, A/C, etc. To address the different criticality levels
of these autonomous systems, Vestal [9] proposed a mixed-
criticality system (MCS) model, which also improves the
system utilization assigning different WCETs to a task for
different system criticality levels (a comprehensive review
on MCS is presented in [10]). All tasks are executed in a
low-critical mode (regular operating mode) with the smallest
WCET values in regular operation. Suppose the system fails to
meet the deadline or over-executes a high-critical task, then the
system switches to the higher system critical level by graceful
degradation or dropping of low-criticality tasks. In addition,
(typically) only high-critical tasks have a timing guarantee in
the higher criticality system mode. The MCS task set uses
relatively low and optimistic WCET in regular operating mode.
Hence, it is possible to derive a data-driven WCET for the task
set, specifically for regular system operation mode.

B. Machine Learning

Machine learning includes a wide range of algorithms
from end-to-end problem-solving algorithms to specific feature
extraction algorithms [11]–[15]. Machine learning algorithms
are typically categorized into three directions: supervised
learning [16], [17], unsupervised learning [18], [19], and rein-
forcement learning [20], [21], which depend on the interaction
or feedback between the learning algorithms and the learning
systems. There are also a huge amount of machine learning
algorithms beyond these three mainstream scopes (or interdis-
ciplinary ones), which are widely used/adopted in real-time
learning systems for some specific tasks. For example, meta
learning for hyper-parameter tuning on real-time embedded
systems [22], real-time traffic classification through semi-
supervised learning [23], and real-time inference and training
for deep learning [24]. Apart from the classical categorization
of machine learning algorithms, we purposely divide the
machine learning algorithms applied in real-time IoT systems
into two branches, which are statistical learning algorithms and
neural network-based learning/deep learning algorithms. The
motivation behind is to comprehensively review the previous
efforts of applying learning algorithms in real-time systems by
task complexity and data complexity. Since the data streams

in modern real-time IoT systems are increasingly large-scale,
dynamic, and heterogeneous, some of the traditional statistical
learning strategies/tools are unable or inefficient to handle the
complicated scenarios, which frequently occur in nowadays
autonomous driving systems, security robots, online signal
processing, etc. For example, the family of support vector
machines [25] (SVMs) (e.g., kernel SVMs) are barely used in
real-time object detection/recognition in autonomous driving
systems due to its shallow architecture and inflexibility com-
pared to the (deep) neural network [26], where any marginal
increase of accuracy matters in such case for safety issue and
(deep) neural network benefits from its ability to tackle large-
scale data, and complicated tasks can beat SVMs in terms
of accuracy under most circumstances [27]–[29]. However,
there is no free lunch for machine learning. For some cases
in real-time IoT systems (e.g., real-time task scheduling),
statistical learning algorithms (comparably shallow one) are
often adopted due to their characteristics of off-the-shelf and
easy-to-train [30], [31] which save a lot of time when handling
the “lite” and urgent tasks.

It is important to note that other than commonly/strictly
defined machine learning algorithms, we discovered a rich
amount of not clear-cut “learning” algorithms which are in-
creasingly adopted in modern real-time IoT systems. These
algorithms most lie in evolutionary computing [32], [33],
stochastic search [34], [35], and other optimization algo-
rithms (e.g., expectation-maximization algorithms [36] and
augmented Lagrangian method [37]) which are rarely recog-
nized as traditional machine learning algorithms.

As shown in Fig. 1, we also summarize the popular branches
of ML algorithm in real-time IoT systems with a taxonomy.
Note that the taxonomy does not cover all the branches of
ML and may differ from the structure of other taxonomies,
especially in ML domains, since we mainly adopt the branches
fulfilling the real-time constraints. In the following subsec-
tions, we will briefly review the most representative and
commonly used learning algorithms in real-time IoT systems
in the above-mentioned three aspects.

1) Statistical Learning Algorithms: As we investigated, the
statistical machine learning algorithms have been widely used
in real-time IoT systems for solving some classic problems
such as classification [38], [39], regression [40], [41] and
clustering [42], [43]. By incorporating prior knowledge and
entropy metric, correlation analysis, inherent statistical struc-
tures of input data, and nonlinear relations, statistical machine
learning algorithms are easy to deploy [44], interpretable [45],
[46] and trustworthy [47] in some of the real-time IoT appli-
cations ranging from traditional real-time scheduling systems
[48], [49] to modern real-time IoT systems [50]–[52]. The
family of these algorithms includes decision trees [53], random
forest [54], Gaussian mixture model [55], naive Bayes [56],
linear regression [57], logistic regression [58], SVM [25],
boosting [59], nearest-neighbor methods [60], Q-learning [61],
principal component analysis (PCA) [62] and so on. How-
ever, the main drawback of these statistical machine learning
algorithms is straightforward, where the overall performance
significantly degrades when either the complexity of tasks
or the scale of data dramatically increases [26], [63]. We
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Fig. 1: Some Popular Machine Learning Branches in Real-Time IoT Systems.

will systematically review and summarize the employment
of statistical machine learning algorithms in real-time IoT
systems in Section III.

2) Neural Network-Based (Deep) Learning Algorithms:
On top of a wide variety of common-used machine learning
algorithms, neural network architectures play an important
role in modern learning-based real-time systems and appli-
cations. One most employed class of ML algorithms exploits
neural network architecture and stack several layers of the
neural network well-known as Deep Learning, or Deep Neural
Network (DNN) [64]–[66]. Frequently used neural network
architectures include fully connected layers (FC-layers) [67],
convolutional neural networks (CNN) [68], recurrent neural
networks (RNN) [69], and residual networks [27], etc. Among
them, CNN and its variation with other networks are the most
popular and highly used deep learning strategy in IoT systems
such as computer vision [70]–[72], natural language process-
ing [73], [74], and activity recognition [75], [76], etc. We
will briefly introduce two of the most popular neural network-
based machine learning applications and their variations in the
following subsections.

a) Convolutional Neural Networks: Convolutional neural
network (CNN) is a class of deep learning algorithms, highly
used in high-dimensional datasets such as images to extract
low-dimensional latent space representations and location in-
variant features [77]. CNN is the building block of the famous
deep learning architectures such as LeNet [78], AlexNet [79],
GoogLeNet [80], VGGNet [81], etc. CNN is consists of
several types of layers, such as Convolution Layers, Pooling
Layers, Activation Layers, Fully-connected layers, etc. As one
of the most common-used modules in deep learning/DNN,
the real-time characteristics and resource consumption are the
prime concerns when applying it to modern real-time IoT
(embedded) systems. We will discuss the current disadvantages
and the corresponding solutions for deploying CNN on real-
time IoT systems in Section III.B.1.

b) Deep Reinforcement Learning: Reinforcement learn-
ing is a branch of machine learning technique, which is
designed to solve problems via a feedback system including
rewards and penalties. The so-called agent in reinforcement
learning moves through several states in an environment to

achieve a pre-defined final state, as illustrated in Figure 2. In
the moving process, the agent exploits past experience and
explores new states to achieve its goal. Through trial and
error (penalties versus rewards), the agent will form the final
solution of the problem. The solution consists of a series of
the optimal sequence of states in which the accumulated sum
of rewards is maximized.

Fig. 2: Reinforcement learning framework.

However, due to its limitation on large-scale dynamic data-
environment [21], [82], reinforcement learning intends to
embrace the hug of deep learning in nowadays real-time IoT
applications. As we aforementioned, (deep) neural networks
can be used to approximate specific function, which is espe-
cially useful in RL when the space of states or actions are too
broad to be fully acknowledged. In specific, a neural network
also be capable of approximating a value function, or a policy
function. In other words, neural nets are able to learn mapping
states to values. Instead of storing, indexing, and updating
the mapping information in a lookup table, which is difficult
for the large-scale problem, we train a neural network with
samples in the space of state or action to learn the best strategy
to achieve the goal of the learning process. Moreover, in deep
reinforcement learning, convolutional networks are usually
used to recognize an agent’s state when the input is visual;
e.g. wildlife tracking using deep convolutional UAV [83] in
Figure 3. That is, the UVA leverage the target image caption
as the reward for movement guiding and wildlife tracking.

Rather than the above tasks in machine learning, deep rein-
forcement learning is also a powerful tool to solve combina-
torial optimization and scheduling problems. These problems
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Fig. 3: Deep Convolutional Agent on UAV.

are often challenging in real-time systems and IoT applica-
tions, e.g., learning near-optimal schedules when the real-time
system is not known in advance [84], resource protection,
and real-time detection [85]. Another branch of representa-
tive applications which massively involve deep reinforcement
learning is wireless communication, especially 6G [86], [87].
Since the wireless communication environment in modern
IoT systems is highly dynamic and complex, the traditional
machine learning algorithms confront the problem of heavy
and inefficient mathematical computations, while deep rein-
forcement learning is capable of sustaining reliable wireless
connectivity for the networks by learning the environment
dynamics. We will further review the employment of deep
reinforcement learning in Section III-A.

3) Other Miscellaneous and Optimization Algorithms:
Beyond the scope of typical machine learning algorithms,
we can also observe the rising of hybrid learning strategies
and optimization algorithms in modern real-time IoT systems.
For hybrid learning strategies, semi-supervised learning [88],
[89] is one of the popular directions. In semi-supervised
learning, we intend to form a supervised learning algorithm
leveraging labeled data augmented by unlabeled data. The
amount of unlabeled or partially labeled data is usually
bigger than the amount of labeled data, since the latter is
more expensive and difficult to obtain. Thus, the goal is to
overcome one of the problems of supervised learning (also
the unsupervised learning, where its application spectrum is
limited) – having not enough labeled data. By adding cheap
and abundant unlabeled data, we are hoping to build a better
model than using supervised learning alone. Although semi-
supervised learning sounds like a reasonable approach, the
practical employment is constrained by certain assumptions
(manifold, cluster, or smoothness assumption [90]), which are
more likely to be violated in real-time system settings. For
example, when handling the real-time streaming data, semi-
supervised learning would confront the issue of false self-
training [23], [91] (mistake can re-enforce themselves) due
to the fact that we rarely observe the true label especially in
a real-time manner so as to be trapped into a wrong direction
of learning (father and farther from the true manifold of data
itself).

Another branch is the well-known optimization strategies
(aka mathematical optimization) [92]–[94] which are not typi-

cally categorized into traditional machine learning algorithms.
Although we often rely on them to solve the machine learning
problems, e.g., stochastic optimization [95], [96] for Back-
propagation in training neural networks, the optimization algo-
rithms could be independent of machine learning and provide
a solid guide or approximation for the objectives in real-
time IoT systems. As one of the representatives, evolutionary
computing [32] has some of the practical advantages to be
employed especially in real-time scheduling, which include the
flexibility of the optimizing procedure, as well as their ability
to self-adapt the search for optimum solutions on the fly.
Specifically, each new generation is produced by stochastically
removing less desired solutions and introducing small random
changes, where this mechanism is naturally suitable for some
extensive and creative searching, e.g., generate schedulability
test [97], [98] or response time analysis [99]–[101] in real-
time IoT systems. With such an evolutionary optimization
algorithm, we can automatically explore the possible formation
of schedulability tests which saves a lot of effort by manual
checking and proofing. We will further review the related
work which involves these miscellaneous and optimization
algorithm algorithms in the following sections.

III. ML IN REAL-TIME IOT SYSTEMS

In this section, we will review the existing and potential
of machine learning, deep learning and miscellaneous algo-
rithms to employ in real-time IoT systems. These algorithms
range from almost all the popular branches in Section II.B
and we are not going to dive into any specific branch but
with a well-designed taxonomy of employment to showcase
the relationship between ML algorithms and real-time IoT
systems. Note that although hard-ware design also involves
many ML-based algorithms and plays an important role in a
real deployment, we mainly focus on the software level due
to our core expertise and limited space. To fully investigate
the entire paradigm, we initialize the discussion from two
key components in the real-time IoT systems, which are ML-
based Learning Algorithm and Real-Time scheduler. For the
learning algorithm, it could play the role of either assisting the
operation of the IoT system in a real-time manner or a target
task to be scheduled to achieve the system level real-time and
other optimization objectives. Simultaneously, the real-time
scheduler is in charge of scheduling the task to guarantee
the characteristics of hard/soft real-time in IoT systems, in
which the learning algorithms could enhance the efficiency and
efficacy of the scheduling process. For specific applications,
the real-time scheduler on the contrary can guide the learning
algorithm to generate valid and affordable (by computation
resource in system) solutions with a strong real-time guarantee.
The interaction between these two components derives three
mainstream of integration summarized as i) ML-based learning
algorithms for real-time scheduling, ii) adaptation of ML-
based learning algorithm to make it schedulable and iii) rising
security issues when involving ML-based learning algorithms
in real-time IoT systems. As illustrated in Figure 4, a horizon-
tal tree-like structure shows the hierarchical categorization of
ML employment in real-time IoT systems. Note that security
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issues increasingly draw attention in recent studies in terms of
a variety of information leakage in real-time IoT systems by
learning-based strategies or side-channel attacks [102], [103].
Thus, we separately review the security issues in real-time
IoT systems on the top of the predefined categories. For the
remaining parts of this section, we will discuss each branch
with its leaves from top to bottom in descending order of
the amount of related literature. The branch subsection will
explore the employment and applications, which consists of
the most popular and exploited leaf topics as follows,

• ML for Scheduling Analysis in Real-Time IoT Systems.
– ML-based Schedulability Analysis.
– ML-based WCET Estimations.
– ML-based System-behavior Prediction.

• Adaptation of ML in Real-Time IoT Systems.
– Model Compression for Real-Time Performance.
– Real-Time Pipeline.

• Security of Real-Time IoT Systems.

ML in Real-Time IoT
systems

ML for Scheduling
Anlysis

ML-based Schedulability Analysis

ML-based WCET Estimations

  ML-based System-Behavior Predictions

Adaptation of ML

Model Compression for IoT Systems

Real-Time Pipeline for IoT Systems

Security & Privacy
Enhencement for ML in IoT Systems

Enhencement via ML for IoT Systems

Fig. 4: The tree structure of ML employment.

For each topic, we will discuss the motivation, scope,
technical details, contribution and remaining challenges of the
related machine learning algorithms and the design of real-
time IoT systems.

A. ML for Scheduling Analysis in Real-Time IoT Systems

Real-time scheduling problems on modern hardware (e.g.,
heterogeneous and multi-processor platform) are highly in-
tractable and often NP-Hard in a strong sense. Traditional
scheduling algorithms (e.g., dynamic and fixed-priority algo-
rithms) are (mostly) approximate, yet often with high time
complexity [104]. To tackle the scheduling problems, machine
learning gets attention from the research community as early
as the pioneering work of Hopfield and Tank [105] which uses
neural networks for optimization purposes. The main challenge
of using neural networks in real-time scheduling problems lies
in the mapping of real-time scheduling constraints into the
neural network setup. Few early attempts to map the real-
time scheduling problem into neural networks to solve the
scheduling problems are [106]–[113]. In the case of mapping
the scheduling problem to the ML-framework, we need to
answer several questions, such as —

• How to design a dataset (e.g., input-output pairs) using
scheduling constraints for the ML-framework?

• How to choose a suitable ML-framework or DNN archi-
tecture for the specified problem?

• How to assign priority to the tasks for efficient model
training and inference?

In [114], Lee et al. proposed ML-based scheduling of fixed-
priority task model. Guo and Baruah [115] developed a single
layer RNN model for a real-time scheduling problem on a
uniprocessor system. Besides considering scheduling prob-
lems, ML-based schedulability analysis, WCET estimation,
and real-time system behavior prediction are getting attention
from the research community. Although these three problems
are interrelated, such as schedulability analysis requires WCET
of each task and real-time system behaviors are highly depen-
dent on the system scheduling policies, analyzing each prob-
lem is tedious for large systems. We will discuss the related
works in these three directions in the following subsections.

1) ML-Based Schedulability Analysis: In real-time systems,
schedulability analysis of a scheduling algorithm has to per-
form before the system’s runtime to guarantee the algorithm’s
timing correctness for a task set. The schedulability analysis is
usually performed based on each task’s worst-case execution
time in the system. A general requirement of schedulability
analysis of scheduling algorithms is determinism. So, the com-
plexity or hardness of schedulability analysis is a significant
concern in designing the scheduling algorithms. Moreover,
the complexity of schedulability analysis increases with the
increment of the cores/processors in the system.

In fact, due to the SWaP (size, weight, and power) lim-
itations and high computational resource requirements of
modern real-time IoTs, the real-time chip design accelerates
the urge to move from single processor to multiprocessors
system (e.g., multiprocessor-system-on-a-chip (MPSoC) [4]).
The multiprocessor system’s schedulability analysis is highly
complicated and, in most cases, NP-Hard or NP-Hard in a
strong sense problem. It also becomes erratic if that schedu-
lability analysis is derived from conventional ways such as
response time analysis [116] based schedulability analysis. To
this end, researchers have become interested in mechanized
schedulability analysis [117] rather than exact analysis. In
[118], Dziurzanski et al. used evolutionary algorithms to semi-
automate response time analysis technique for schedulability
analysis. There are some initial results on mechanized schedu-
lability analysis; however, ML-based schedulability is still
relatively unexplored. ML-based schedulability analysis would
not give the exact schedulability of the scheduling algorithms.
It is also essential to analyze the feasibility and reliability of
ML-based schedulability analysis.

In contrast to real-time systems’ exact parameterized
scheduling problems, real-time routing scheduling problems
are usually formulated as the distribution of latency of each
pair of nodes in the network. A possible shortest path for a
source node to a destination node can be easily found using
the Dijkstra algorithm [119] for worst-case latency along the
path of each intermediate edge. However, such an approach
is very pessimistic. Recently, Agrawal et al. [120] proposed
an RL-based routing algorithm constructing a Q-table using
an optimal routing table of the network, and then they dy-
namically update the Q-table if any changes (e.g., add/drop of
intermediate nodes) occur in the routing table during runtime.
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Real-time scheduling problem, in general, becomes a large
search problem as system workload increases. RL performs
efficiently for large search space problems, and Bo et al. [121]
formulate the online scheduling problem for a system with
aperiodic workloads using deep-RL. They intuitively modeled
each job as an agent in the RL framework, and formulated the
scheduling decision problem as Markov Game.

2) ML-Based WCET Estimations: The precise WCET cal-
culation requires the process’s executable file (e.g., binary
code, source code, intermediate code, etc.) and detailed knowl-
edge of the target system’s microarchitecture (e.g., cache,
pipeline, branch predictor, etc.) for static analysis. In static
analysis techniques, the (safe) WCET is estimated without
executing the program leveraging the detailed system archi-
tectural knowledge. Therefore, the precise WCET estimation
of the processes or tasks has become extremely difficult either
the hardware architecture (e.g., MPSoCs [4]) becomes too
complex to design a static analysis model or the unavailability
of architectural details for intellectual property reasons. Be-
sides static analysis techniques, two other traditional analytical
methodologies such as end-to-end measurement, and hybrid
analysis techniques [122] (the interested reader may refer to
[123] for a detailed survey on existing WCET estimation tools)
are used to determine the WCETs.

In contrast to static analysis techniques, the end-to-end
measurement techniques execute the process for several sets
of input (without knowing system architecture) and collect
the execution time. Then, WCET is chosen as the maximum
observable execution time or uses statistical extrapolation
with the addition of a safety margin to mitigate the lack of
confidence in the measurement process. One critical draw-
back of measurement-based estimation is the code coverage
problem – it is highly difficult to find inputs that cover
all basic blocks of the target process. In hybrid analysis
methods, the WCET of basic blocks of processes is usually
estimated using measurement-based techniques. The WCET
of the whole process is estimated using a static analysis tool
(e.g., IPET [123]). However, these static analysis tools are
very pessimistic, and the drawback of measurement-based
estimation exists. Therefore, a more dynamic approach for
estimating the WCET is necessary. An alternating approach
of WCET estimation using ML-framework with few early
results are already proposed by [124]–[127]. Huybrechts et
al. developed regression algorithms [124] and deep learning
algorithms [125] based WCET estimation methods for a hybrid
scenario. In ML-based WCET estimation, an ML-based timing
model is developed in the learning phase, and then the model
is used to determine the timing of basic blocks. In the second
phase, modified static analysis tools are used to find the timing
of the whole control flow graph of the target process. Although
ML-based approaches remove the drawback of measurement-
based approaches, the ML model does not guarantee the
perfect timing model of system architecture. Therefore, these
methods are not applicable in safety-critical hard-real-time
systems.

In [9], Vestal presents a varying WCET-based scheduling
technique called mixed-criticality systems to avoid very pes-

simistic WCET’s of tasks in complex systems. As the WCET
estimation became difficult, the mixed-criticality systems used
different levels of WCET’s based on the criticality levels to
improve the average-case performance of the system. In these
mixed-critical or multiple mode systems, the system designer
has the freedom to choose an optimal WCET value for the
lower-critical task. So, the probabilistic WCET estimation
became popular for low-critical tasks. A comprehensive survey
of probabilistic worst-case timing analysis is given in [128]. In
fact, the system complexity affects other system parameters,
such as, the period of the tasks. So, it is often important to
measure the run-time period of the tasks for better dynamic
WCET estimation. Vădineanu and Nasri [40] developed re-
gression algorithms based run time period estimation methods
for real-time tasks in complex systems.

3) ML-based System Behavior Prediction: Real-time IoT
applications are often used in safety-critical systems — a
task missing a deadline can be catastrophic for the system
and endanger human lives. Hence, hard real-time systems
are designed with deterministic behavior to guarantee the
task meets every deadline. The safety-critical systems are
traditionally designed as mixed-criticality systems [9] or multi-
model systems [129]. In mixed-criticality systems, the system
may switch its mode to different safety levels depending
on the system behavior in runtime. Typically, the system is
unaware of such a mode switch event prior to the occurrence
(non-clairvoyant). Therefore, the scheduling algorithms for
these scenarios incur significant overhead (e.g., dramatic in-
creases of system workload demand or execution due to larger
WCET’s in higher critical levels) for the consideration of
sudden mode-switch instances. It is obvious that clairvoyant or
semi-clairvoyant scheduling algorithms perform better than the
non-clairvoyant algorithms [130]. In clairvoyant scheduling
algorithms, the scheduler assumes that the system mode-
switch instant is known before the runtime. In contrast, in
semi-clairvoyant algorithms, the mode-switch instant is known
at the release instant of the job that initiates the system
mode-switch to the higher criticality level. However, there
is a practical implementation of the clairvoyance and semi-
clairvoyance system yet. Recent work on quarter-clairvoyance
(mode-switch instant is predicted in between the release instant
of mode-switch initiator job and the mode-switch instant
of the system), Pythia-MCS [131], leverages the I/O data
throughput of the system. In Pythia-MCS, a statistical mode-
switch instant detector is developed based on data traffic
through I/O buses and both experimentally on the practical
platform and analytically shows that Pythia-MCS performs
better than the non-clairvoyant systems. However, Pythia-MCS
did not use any ML in their design, it may be possible to use
ML-framework to improve the predictability further than the
quarter-clairvoyance.

B. Adaptation of ML in Real-Time IoT Systems

Modern real-time IoT systems increasingly adopt the family
of DNNs or deep learning to embrace the explosive growth of
data scale and problem complexity in big data era. Applying
DNNs can drastically raise the performance of a wide range
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of applications than using statistical learning algorithms, e.g.,
accuracy in image recognition and feasibility of decision in
autonomous control. However, one of the most significant
challenges is that the real-timeness of the DNNs deployment
is hard to be controlled and guaranteed. Since most of the
DNNs are designed and developed on large-scale computing
platform with powerful GPU clusters for specific performance
boosting, the traditional DNNs is not available for strict timing
requirement when applying to resource-constrained embedded
real-time systems, which is nowadays’ trending environment in
mobile and autonomous IoT systems. To handle the adaptabil-
ity issue of DNNs, two representative directions for overhead
mitigation are come up with in previous studies which are
i) compressing the model for implementation speed-up and
ii) optimizing the system-wise pipeline for real-timeness. We
will summarize the related works and discuss the contributions
from these two directions in the following subsections.

1) Model Compression for Real-Time IoT Systems.: DNNs
with deep learning brings a revolution in the broad domain
of computer vision and natural language processing (NLP).
As one of the most powerful tools, DNNs have a huge
impact on the standard process of industry practices, where
the classical two-stage process (i.e., training and inference) is
widely adopted.

As aforementioned, we design a specific DNN model for
the problem and train the model accordingly with the data
set available, where the training process may take a long time
(e.g., tens of hours or even a few weeks) on a GPU or a cluster
of high-performance CPU. After the training process, we
deploy the model in the target working environment where the
stream of data are fed into the model for real-time inference.
The output we obtained either is used as the final result or as
the intermediate result for the downstream systems. However,
the applications, e.g., autonomous car, and search engines
nowadays require much less latency than before, which means
the deep learning inference is required to be lightning-fast,
usually less than tens of milliseconds for each output. Thus,
different from the traditional academical focus on model
training, the real-time IoT system takes more consideration
on the inference speed, which brings an acceleration on DNN
inference from the hardware and software aspects. In this
work, we mainly investigate the software solution in real-time
IoT systems.

From the algorithm perspective, model compression is one
promising and commonly used method to decrease the latency
of DNN inference and DRAM footprint. It is easy to fit
compressed models in on-chip SRAM cache rather than off-
chip DRAM memory and these models can help the DNNs
work on mobile devices and other stream-data-based appli-
cations, especially the inference speed, memory size, and
the communication bandwidth are constrained hardly. Fully
connected layers are known to be over parametrized in most
state-of-the-art DNN architectures. A lot of previous research
has focused on compressing FC layers, either by bucketing
connection weights (pseudo) randomly using a hash function
or by vector quantization. Network-in-Network is proposed
to replace FC layers with global average pooling, with an

additional linear layer added at the top for better transferability.
Benchmarked on CPU, desktop GPU and mobile GPU, Deep
Compression yields 30× to 50× more compact AlexNet
and VGG-16 models that have 3× to 4× layerwise speedup
and 3× to 7× higher energy efficiency, all without loss of
accuracy on ImageNet. There are several techniques to reduce
network size, for example, pruning the inference networks
[132], quantization of network parameters to avoid floating-
point operations [133], and dropout of less important neurons
[134], etc. We will summarize the main branch of these model
compression techniques and discuss the advantages and the
disadvantages of applying them in real-time IoT systems:

• Pruning. Pruning [132], [138]–[146] intends to remove
redundant, unnecessary connections that are not sensitive
to performance to compress the model (decrease the
number of parameters). This not only helps reduce the
overall model size but also saves on computation time and
energy. As shown in Figure 5, the number of synapses
and neurons are in some degree reduced in the pruning
process.

Before Pruning After Pruning

Pruning
Synapses

Pruning
Neuron

Fig. 5: Pruning on Synapses and Neuron.

• Quantization. The weight parameters are usually stored
as 32-bit floating-point numbers in DNNs. Quantization
is one way to represent these weight parameters through
reducing the number of bits [147]–[151]. The weight
parameters can be customized to 16-bit, 8-bit, 4-bit or
even with 1-bit. Since the number of bits are decreased,
the size of the deep neural network can be significantly
shrunken.

• Knowledge Distillation. Knowledge distillation [152]–
[155] is often used in model training with large-scale
dataset. It is natural thinking to transfer the originally
large and complicated model (well-trained) to a smaller
and compact one. The originally large model is the so-
called teacher network, while the transferred smaller one
is the student network.

• Selective Attention. Selective attention [156]–[159] is a
technique of targeting the interested points, while ignor-
ing the other irrelevant elements or objects. It is derived
from the vision system of human beings [160], [161].
When we stare in a specific direction, we only target one
or a few objects at a time, and other regions are blurred
out.

• Low-Rank Decomposition. Low-rank decomposi-
tion/factorization uses matrix/tensor decomposition to
estimate the informative parameters. A weight matrix A
with m × n dimension and having a rank r is replaced
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Techniques Pros Cons

Pruning

• Applicable in the process of training and post-training
• Applicable to fully connected networks or convolutional

networks (layers)
• Balance the trade-off between inference time (model

size) with accuracy [135]

• It is not as helpful as replacing with a better architec-
ture [135]

• The model size benefits cannot lead to a significant ben-
efits on implementation latency, especially in common
platforms (e.g., TensorFlow)

Quantization

• Applicable in the process of training and post-training
• Applicable to fully connected networks or convolutional

networks (layers)

• The convergence of the compressed model is affected.
Learning rate is required to be small to ensure a good
performance of the networks [136]

• Since the gradient cannot propagate back through dis-
crete neurons, the traditional back-propagation training is
infeasible. Thus, approximation methods are preferred to
estimating the gradients of the loss function instead [136]

Knowledge Distillation

• The pre-trained teacher network makes the student net-
work easier and faster to train (less training data and
smaller size of the model required)

• Can reduce the size of a network regardless of the
structural difference between the teacher and the student
models

• The student model may require a larger dataset with
a longer training process to train without a pre-trained
teacher model

Selective Attention

• Faster inference
• Smaller model (e.g. a face detector and cropper could be

only 44 KB)
• Accuracy gain (by focusing downstream AI on only the

regions/objects of interest)

• Supports only training from scratch

Low-rank Factorization

• Applicable in the process of training and post-training
• Applicable to fully connected networks or convolutional

networks (layers)
• When applied in the process of training, it can reduce

training time

• Computationally expensive
• Cannot perform global parameters compression
• Factorization requires extensive model retraining to

achieve convergence

Bits Precision

• Float-to-integer transferring simultaneously reduces the
size of storage as well as computational cost

• It is flexible to use any number of bits to perform the DNN
operations

• Binarization techniques can achieve a high-order com-
pression without much performance degradation

• It is time-consuming to select an optimal number of bits
for the specific estimation

• Complexity from float to integer along with a higher
accuracy compromise

Transfer Learning

• A small size of data set is adequate for the training
process of the transferred domain

• No more training from scratch saves a lot of time and
computation resource

• The target domain needs to be similar with the initial
domain

• Can not remove layers with confidence to reduce the
number of parameters

Early Exit

• Applicable during and after training
• Availability of multiple exit points depending on the goal

of tasks
• The early exit model can integrate with other classifiers

(e.g., SVM)

• The exit point needs to be carefully chosen to avoid a
sharp drop of performance [137]

TABLE I: Main Stream Model Compression Techniques with their Pros and Cons.

by smaller dimension matrices. This technique [162]–
[166] helps by factorizing a large matrix into smaller
matrices. Recently, the tensor-wise decomposition
techniques [167]–[170] are prevailing and frequently
adopted in model compression of deep convolutional
neural networks.

• Bits Precision. For bits precision, the number of bits used
to represent weight parameters is suppressed for reducing
the storage and computation [171]. As an example, we
take 32 bits to store the weight parameters in a matrix
of the DNN model. It can be further compressed to 8
bits by replacing floats with integers. This transforma-
tion from float to integer simultaneously reduces storage
and computation requirements. However, the complexity
might increase during the conversion to achieve higher
accuracy. The existing researches on bits precision [133],
[172]–[177] are devoted to addressing these issues.

• Transfer Learning. Transfer Learning [178], [179] is

another branch of machine learning technique, where a
model designed for a task is reused as the starting point
for models on the other tasks. It is a prevailing method
in deep learning where pre-trained models are used as
the starting point on computer vision and natural lan-
guage processing tasks given the vast compute and time
resources required to develop neural network models on
these problems, where the pre-trained model then can be
used to transfer to other problems without training from
the scratch which can be regarded as a form of model
compression [156], [180], [181]. Specifically, the most
common strategy is to leverage the transferred/compact
convolutional filters, where special structural convolu-
tional filters are designed to reduce the parameter space
and save storage/computation [181]–[183]

• Early Exit. While DNNs benefit from a vast number of
layers, it’s often the case that a large number of samples
can be classified accurately with much less computation.
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The related works have been proposed to leverage the
idea of early exiting before the predefined endpoint of
the pipelines. Panda et al. [184] observe that a large
number of samples can be classified easily and require
less processing than some more difficult samples and they
obtain this in terms of energy savings. Surat et al. [185]
investigate a selective approach to exit placement and
criteria for exiting early. Recently, similar works [137],
[186], [187] also intended to reduce the model size via
early exit technique in a wide range of applications.

The best part is, all of the above techniques are complemen-
tary to each other. They can be applied as is or combined with
one or multiple techniques. By using a three-stage pipeline;
pruning, quantization and bits precision to reduce the size of
the pre-trained model, where VGG16 model trained on the
ImageNet dataset was reduced from 550 to 11.3 MB [188],
which saves a huge amount of time in the training phase.
Most of the techniques discussed above can be applied to
pre-trained models, as a post-processing step to reduce the
model size and increase inference speed. In addition, they can
be applied during training as well. Thus, model compression
could be a vital basis for accomplishing the real-timeness in
modern IoT systems since it provides a wide-range of time-
saving techniques to meet the deadline requirement without
much performance degradation. The next step is naturally
about how we implement such model compression techniques
in a real-time pipeline. The practical real-time IoT systems
typically have complicated scenarios which consist of multiple
tasks (e.g., deep learning applications) with periodic/sporadic
constraints, where the simple case-by-case model compression
is no longer valid and is urgent to be adapted.

2) Real-Time Pipeline: Implementing the aforementioned
model compression techniques into real-time IoT systems is
challenging, since most systems are multi-process and ML
models run on shared resources, where the system-wise latency
and accuracy cannot be guaranteed. To better analyze the
bottleneck when we deploy ML or DL in real-time IoT
systems, we summarize the mainstream pipeline [189]–[191]
into three steps in sequential, which are listed as follows,

• Profiling ML models
• Selecting proper ML model for each task
• Scheduling ML tasks in a real-time manner
Before we review each of the steps in detail, we take a brief

look at the classical two-phase procedure in ML especially
for DL (DNN), which are Training and Inference. Training
is a procedure to guide a (deep) neural network to perform
the desired task (i.e., object recognition or the next word
prediction in a sentence) by feeding the data in it, conducting a
trained model for further use. In the training phase, the model
predicts the representation of each data sample based on the
labels. The prediction error then feedback to update the power
of connections between the neurons. Along with the training
process, such connections are continuously adjusted until the
model achieves a satisfying level of prediction accuracy or it
cannot get better anymore.

As shown in Fig. 6, the researcher has prepared a set of
training data containing hundreds of images (e.g., a person,

a bicycle, or a strawberry is labeled for each image). In the
training phase, the model (DNN) makes a prediction on the
images fed to it. Specifically, in the upper training phase of
Fig. 6, the model misclassifies an image as a strawberry which
has a ground-truth label of a bicycle. This error feed-backs
through a so-called back-propagation, where the weights are
adjusted to mitigate the error so that the same image will
not generate the wrong label (with a higher probability to
generate the correct label) in the future predictions. Such a
training phase continues (i.e., feeding images and updating the
weights according to the possible errors) until the predefined
training steps are executed or the desired prediction accuracy
is achieved. In this moment, the model can be regarded as
a trained one and is ready for future prediction tasks on
those unseen images (never fed into the training phase). Note
that the training phase usually consumes a huge amount of
computation resource especially for those large and complex
DNN models. Andrew Ng, who is the former chief scientist
at Baidu’s Silicon Valley Lab, says training one of Baidu’s
Chinese speech recognition models requires not only four
terabytes of training data, but also 20 exaflops of computing
— that’s 20 billion billion math operations — across the entire
training cycle. Thus, the current training is rarely considered to
be real-timely scheduled, while we still explore the potentials
and summarize some possible solutions in Section V.B.2.

Once the training phase is finished, the trained model is
then used to make predictions on the unseen data, which
is the so-called Inference phase in the learning process. As
aforementioned, the training phase involves inference actually
since the forward propagation can be regarded as the classify
the input images for weights updating. In this case, deploying
a trained DNN for inference can be trivial, where usually a
simple forward propagation of the trained model is enough for
a standard Inference phase. Due to this fact, the researchers
prefer to make efforts to improve or optimize inference of
DNN in real-time IoT systems. In the rest of this section,
we summarize the previous works on the inference process of
ML/DNN in three steps to achieve the real-time pipeline.
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Fig. 6: The Training and Inference process of DNN [192]

a) Model Profiling: The first step is to construct a trust-
worthy and comprehensive profile of ML models in terms of
execution time, performance (e.g., accuracy) and computation
resource cost. Unless we are accurately informed of these
characteristics, we are barely able to control the timing of
running ML models to solve complex problems in multi-
task scenarios. For the aforementioned three kinds of ML
algorithms, neural network-based (deep) learning is one of
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the most adaptable and scalable algorithms due to its highly
modularized (e.g., stacked and replaceable layered design)
architecture. Although the training process is uncertain and
time-consuming, once we have the well-trained model, the
time consumption on inference is with small perturbation in an
acceptable range, where we can estimate the relatively accurate
execution time based on the architecture design of specific
DNNs.

Characterizing DL model inference is complex as its perfor-
mance depends on the interplay between different levels of the
HW/SW stack, e.g., frameworks, system libraries, and hard-
ware platforms. A model inference pipeline can be described
as a top-down nested flow. At the top, a model-level evalua-
tion pipeline plays an important role. Three components are
included in this level, which are input pre-processing, model
prediction, and output post-processing. Inside the level of
model prediction, the layer-level components, e.g., convolution
layer, batch normalization layer, softmax layer, etc. Further
within each layer are the GPU kernel-level components, a
sequence of CUDA API calls or GPU kernels invoked by the
layer. It is critical to obtain a holistic view of the execution
to identify and locate performance bottlenecks due to the
complexities of model inference.

Traditional profiling strategies bring a partial view of model
execution. For example in ML profiling on GPUs, in order
to measure the latency of model level, we can insert timing
code in the model prediction step of the inference pipeline.
To capture the layer-level information, we can leverage the
ML framework’s profiling capabilities [193], [194]. Then, to
capture GPU kernel information, we use GPU profilers such as
NVIDIA’s nvprof [195] or Nsight [196]. To correlate profiled
events with model layers, Li et al. propose an across-stack
profiling design named XSP [197] which leverages distributed
tracing to aggregate and correlate the profiles from different
sources into a single timeline trace. Through the leveled
experimentation methodology, XSP copes with the profiling
overhead and accurately captures the profiles at each HW/SW
stack level.

Apart from software and hardware profiling, DNN inference
model offloading to Cloud or Edge network servers is becom-
ing more and more practical with the increasing importance
of Edge Computing. Related work [198] demonstrates that
the current approach of DNN inference profiling without
considering the dynamic system load of the edge device
results in sub-optimal partitioning of the DNN algorithm and
provides a basic solution approach to that. To further mitigate
the DNN profiling challenges in edge computing, another
group of researchers built a framework - Edgent [199] - a
collaborative and on-demand DNN co-inference framework
with device-edge synergy. Edgent has two advantages: I)
adaptive DNN partitioning design benefits the profiling be-
tween device and edge for the purpose of coordinating the
powerful cloud resource and the proximal edge resource for
real-time DNN inference; II) DNN right-sizing that further
reduces computing latency via early exiting inference at an
appropriate intermediate DNN layer. In addition, considering
the potential network fluctuation in real-world deployment,
Edgent is properly designed to specialize in both static and

dynamic network environments.
b) Model Selection: Once we have acknowledged the

characteristics of a wide range of DNN models, the second
step is to match suitable DNN models for specific tasks to meet
the deadline requirement. The goal of such optimization is typ-
ically minimizing the resource consumption and maximizing
the overall model performance (e.g, accuracy in image clas-
sification) simultaneously. However, it is not straightforward
to process DNN-based workloads in real-time IoT systems
equipped with GPU-accelerated platforms, due to the need to
satisfy two (usually) conflicting goals: timing predictability
and resource efficiency. Timing predictability (i.e., meeting
deadline requirement) is one of the most important factors
in the certification required for some time-critical systems,
e.g., autonomous driving systems. Temporal correctness is
crucial to the functional correctness of an autonomous car
(e.g., accomplishing the task of object detection within a
strict latency to signal automatic brake systems). On the other
hand, autonomous cars need low power consumption, due
to their strict size, weight, and power (SWaP) requirements.
Unfortunately, timing predictability and resource efficiency are
usually in conflict. It is reasonable that the former requires
reserving sufficient resources for guaranteeing latency even in
the worst case; while the latter often desires to allocate just
enough resource that barely meets the needs of the current job.

Two branches of efforts have been separately spared either
from efficient computation and anytime prediction. Many prior
studies propose computationally efficient variants of traditional
machine-learning models ( [200]–[207]). Most of these studies
focus on how to incorporate the computational requirements
of particular computing features in the training of machine-
learning models such as (gradient-boosted) decision trees.
Apart from these explorations in the training of statistical and
shallow machine learning models, FractalNets [208] performs
anytime prediction by progressively evaluating subnetworks of
the full network and deep architecture. FractalNets are not ex-
plicitly optimized for computation efficiency and with in static
strategy. Rather than static strategy, [209]–[211] are proposed
to reduce the batch computational cost, and adaptively evaluate
neural networks. Specifically, the adaptive computation time
method [209] and its extension [210] perform an adaptive
evaluation on test examples to save batch computational cost,
and focus on skipping units rather than layers. In [212],
a “composer” model is trained to construct the evaluation
network from a set of sub-modules for each test example
(can be regarded as a different task under assignment). The
Feedback Networks [213] enable early predictions by making
predictions in a recurrent fashion, which shares parameters
among classifiers.

On top of these methods, [191] adopts a specially designed
network with multiple classifiers, which are jointly optimized
during training and can directly output confidence scores to
control the evaluation process for each test example. Note
that this work uses a single CNN with multiple intermediate
classifiers that is trained end-to-end. Unfortunately, the afore-
mentioned methods cannot guarantee a relatively strict real-
time manner without exception. Although the characteristic of
“anytime” can improve the efficiency and flexibility of deep
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learning inference tasks (some take care of both training and
inference phase), the system-level objectives are far from being
accomplished since a trade-off between resource efficiency
and timing predictability should be optimized. In other words,
multiple tasks will compete for the limited resources (with
deadlines) and the real-time IoT system intends to maximize
the overall performance. How to organize Ml/DL workloads
(tasks) in a real-time manner becomes urgent and critical,
where it is natural to solve this issue in the next step to treat
it as a real-time scheduling problem.

c) Model Scheduling: For the third step, previous works
focus on scheduling the ML tasks to fulfill the “conflict”
objective. For general workloads, several recent works have
been done on optimizing latency and energy simultaneously in
multi-core systems [214]–[217]. For example, in autonomous
driving systems, object-detection plays a vital role in dif-
ferent operations, so the object-detection needs to be real-
time obviously. Hence, an end-to-end object-detection analysis
for real-time applications is imperative. In [218], [219], the
execution timing behavior of end-to-end object-detection of
autonomous-driving systems has been analyzed. Based on
timing analysis, Jang et al. [219] proposed three optimization
techniques: a) on-demand resource allocation for capture,
b) zero-slack pipeline, and c) contention-free pipeline. Us-
ing the zero-slack optimization technique, it is possible to
completely avoid the detection mechanism’s queuing delay.
As we investigated, there are not so many works targeting
DL/DNN workloads and exploring their unique characteristics
in performance optimization. A particular aspect of DNNs is
that they have multiple layers, each of which is with different
complexity of computation and a variety of features. [189],
[190] demonstrate that the power consumption pattern differs
dramatically among different layers and with varying system
configurations. The mainstream layer-oblivious energy/latency
optimization algorithms [220], [221] that focus on the general
workload may not be suitable to DNN-based automobiles since
they do not explore and exploit per-layer characteristics.

Moreover, most existing algorithms consider energy opti-
mization in environments with soft timing constraints [222]–
[224]. They improve latency only on a best-effort basis but
clearly cannot obtain the required timing predictability. The
resulting state of affairs is rather unsettling: the revolution of
DNN is enabling dramatically better autonomy and services
in the automobile, but the required timing predictability and
energy efficiency cannot be achieved simultaneously in any
DNN-based automobile system. To handle the rigorous timing
constraints, [189], [190] propose a timing-predictable runtime
system that guarantees hard deadlines of DNN workloads
via efficient approximation. They design a layer-aware sub-
deadline assignment policy to include approximation potential,
a measurement of the effectiveness of approximation on a per-
layer basis. Subsequently, they propose a formulation that can
assign individual approximation requirements to layers based
on their approximation potential. This formulation takes into
consideration the real-world limitations of DNN approxima-
tion. As described in [190], one major drawback of naively
enabling concurrency through resource sharing is the fact that
different DNNs might hardly overlap since their cumulative

resource usage exceeds the capacity limits of GPU. A trending
direction for modern real-time pipeline for DNN is to develop
a runtime solution since the fact that different approximated
configurations of a DNN have different resource utilization
profiles. [189] design and implement a runtime system for
enhanced runtime multitasking performance, which exploits
the mutually supplementary relation between approximation
and resource sharing.

Although [189], [190] provide a complete runtime solution
for a real-time pipeline, it still faces the unschedulable issue
since the dynamic mechanism itself has a limitation when up-
coming tasks (DNN workload) exceed its predefined threshold
(e.g., the next task can never be scheduled based on current
system status). Thus, such a scenario leaves a future direction
to design a clairvoyance system that can not only statically pre-
schedule (i.e., check with schedulability tests and generate an
optimal schedule before the execution) the ML workload based
on the plan given by the user, but also is able to dynamically
adapt to some interruption or insertion of some extra tasks.

C. Privacy and Security in Real-Time IoT Systems

The security and privacy issues have been seriously taken
care of in most modern IoT systems. There exists a wide range
of studies, including at least four major dimensions suggested
by [225]. For the first dimension, the author mentions the
limitation of implementing security in devices (e.g., computing
resource, battery, scheduler) of IoT systems with the related
solutions (e.g., encryption technologies). The second one is
the type of IoT attacks, where the possible attacks could
be physical, remote, local, etc. Then, the third one is the
mechanisms and architectures designed and implemented for
authentication and authorization. The last one is layer-wise
security issues, such as physical and network. While ML/DL
actually plays important roles in all the dimensions.

IoT devices that are more easily compromised compared to
desktop computers have led to a rise in IoT botnet attacks. In
order to mitigate this threat, the authors of [226] have proposed
the use of deep autoencoders (DAE) to detect anomalous
network traffic from compromised IoT devices. Deep learning
with its capabilities such as, high-level feature extraction
capability, self-taught, and compression capabilities make it
an ideal hidden pattern discovery that aids in discriminating
attacks from benign traffic. Therefore, study [227] proposes a
deep learning approach based on Stochastic Gradient Descent
(SGD), which enables the detection of attacks in the social
IoT. Besides, the authors of study [228] have proposed a
deep learning technique that enables intrusion detection in
IoT networks using the Bidirectional LSTM Recurrent Neural
Network (BLSTM RNN). Furthermore, in study [229] the
authors have proposed a deep learning model using LSTM to
detect malware in IoT based on OpCodes sequence. We also
showcase a series of representative works applying ML/DL in
IoT systems which is across multiple dimensions. The authors
of study [230] have introduced a framework for IoT based on
Software Defined Networking (SDN). In study [231] the au-
thors have discussed that IoT applications face major security
issues in confidentiality, integrity, privacy, and availability. The
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authors of study [232] have proposed a deep learning approach
with Dense Random Neural networks (DRNN) to predict the
probability of an ongoing network attack based on the packet
capture. Study [233] proposes a model that uses LSTM and
CNN to distinguish ransomware and goodware in networks.

However, none of the above studies has involved real-time
as a constraint to applying ML/DL in IoT systems. Compared
to general-purpose computing and networked systems, privacy
and security used to be less concerned with the research
communities of real-time embedded systems, as embedded
systems were assumed to be isolated from an open or adver-
sarial environment [234], [235]. However, in IoT settings [50],
[51], where devices are inter-connected with inter-operations,
privacy and security have become critical issues of real-
time IoT systems with machine learning and data analytic
components [236], [237]. Generally, we categorize the existing
works into two folders as follows.

• Privacy and Security Enhancements for Data Pro-
cessing and Machine Learning over IoTs. As IoT
devices, such as healthcare IoTs for medical purposes,
usually have to aggregate and process information re-
lated to human-subjects [238], [239], there frequently
needs to address the privacy and security issues for
machine learning or data processing algorithms on these
devices. As early as [240], privacy preservation in mobile
crowdsourced sensor networks has been studied, where
authors proposed to leverage anonymous participants to
protect the location privacy of mobile users. Later, to
further lower the privacy and security risk introduced
by the data aggregation procedure [241] in distributed
IoTs, aggregation-free distributed sensing has been pro-
posed in [242] with mobile sensors, where authors pro-
posed using decentralized SGD with multi-party compu-
tation [243] to enhance the compressive crowdsensing
algorithms [244] for spatial-temporal monitoring. Be-
sides data aggregation, machine learning for statistical
supervised learning has been improved and secured for
distributed IoT applications in [243], [245]. Zhang et
al. [246] proposed DeepPar– a privacy preserving and
asynchronous deep learning for industrial IoT over dis-
tributed datasets. For similar purposes, Li et al. [247]
proposed SmartPC that secures the privacy of distributed
datasets in a federated learning framework while mini-
mizing the overall energy consumption on nodes. Rather
than the separation of samples over distributed datasets,
features of the same group of samples might be split and
stored in different nodes. Feng et al. [248] studied a novel
secure gradient boosting machines model (SecureGBM)
to enable federated learning in such settings. In addition
to tackling the privacy and security issues in a distributed
manner, data federation with trusted execution environ-
ments (TEE) [249]–[252] is yet another way to perform
data aggregation and machine learning using trustworthy
infrastructures.

• Privacy and Security Enhancements for IoT Systems
using Data Analytics and Machine Learning. In addi-
tion to securing the privacy and security of machine learn-

ing tasks over IoT systems, machine learning techniques
could also enhance the privacy and security of real-time
IoTs. Specifically, [253] proposed to use learning-based
Deep-Q-Networks to enhance the security and privacy
in IoT-based healthcare systems. The work [254] tried
to enhance IoT Security through automatic authentica-
tion of wireless nodes using In-Situ machine learning
algorithms. Roopak et al. [255] reviewed deep neural
networks used in IoT cyber security. Zolanvari et al. [256]
studied the effects of imbalanced datasets on IoT security
with machine learning. The work [257] studied machine
learning algorithms to classify the risk of IoT security
issues. Sagduyu et al. [258] studied the use of adversarial
learning algorithms to promote the security of IoTs. More
work could be found in following surveys and technical
reviews [259]–[264].

In addition to the above privacy and security issues for
applications of Real-time IoTs with Machine Learning, some
recent works have demonstrated the possibility to attack real-
time schedulers for IoTs through reversing the execution
times and orders of tasks [102], [265], [266] using machine
learning techniques, where the final goal of these attacks is
to interfere the schedule and execution of mission-critical
tasks and make system failures. A possible way to fight
against these attacks is to incorporate random reshuffling in
scheduling [102]. For one of the most popular branches of ML-
based privacy enhancements, federated learning plays a more
important role in modern real-time IoT systems. To construct
reliable and sustainable IoT system, a series of works study
federated learning with respect to different privacy protection
mechanisms. [267], [268] intend to design reasonable incentive
mechanisms to improve the real-time cooperation among the
learning agents. Another group of works [269]–[273] explores
the edge-empowered mechanisms such as Blockchain-based
edge learning and network virtualization to strengthen the
security in the federated learning process. However, the real-
time characteristics and high-standard privacy and security
protection are rarely balanced in the current state-of-the-arts
federated learning strategies. Thus, it is still remained to be
explored further in future studies.

IV. APPLICABILITY OF MACHINE LEARNING IN
REAL-TIME IOT SYSTEMS

In this section, we try to summarize the applicability of
machine learning techniques in modern real-time IoT systems
in terms of industrial practice.

Firstly, we categorize the real-time IoT systems/applications
in main aspects and briefly introduce several industrial prob-
lems with solutions which are divided into the traditional
pipelines and the ML-based techniques. Then, the real-time
characteristics are checked for each ML-based solution. As
shown in Table II, we pick up six representative real-time
IoT systems/applications including utilities, manufacturing,
healthcare, insurance, retailing, and transportation. The spe-
cific problems and solutions are described as follows.

• In utilities, we are eager to save energy by predicting the
usage and dynamically allocation. The traditional way is
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to analyze the meters for demand-supply prediction via
statistical tools, which is lagging and does not have a
real-time guarantee. But with those ML analyzers to the
gas, electronics and water, we can store the well-trained
model on the server, predict the trend of usage on the fly,
and dynamically adjust the model. Furthermore, we can
make load balancing and dynamical allocating.

• In manufacturing, there are lots of human resources that
can be saved by a real-time IoT system with cameras
and controllers. The system detects abnormal operation,
alerts, and operates actions accordingly, which can save
lots of resources preventing the fault by predicting it.
The main differences between traditional and ML-based
solutions are 1) the prediction accuracy increases by ML
solutions, and 2) the automation is drastically improved
by ML solutions in the manufacturing management.

• In healthcare, the issue is personalized health history
tracking. If the patient has several wearable devices
that track those data, doctors can have a more accurate
analysis of the patient. And this is far cheaper to track
everyone’s health condition than hiring a personal nurse.
In terms of data analysis from wearable devices, ML
solutions are more intelligent than traditional statistical
tools, where the DL models are more suitable for high
dimensional data and meantime fulfill the real-time con-
straints.

• In insurance, the industry analyzes the property in the
financial papers. But recently, we can leverage the data
integration from personal devices. By collecting and
analyzing those data, we can wisely customize personal
insurance that fits personal situations. Risk estimation
is crucial and can be regarded as a kind of anomaly
detection. Through comprehensive investigation, the ML
solutions demonstrate superiority in terms of real-time
and efficacy.

• In retailing, we intend to predict when will our customer
be, what he/she wants to buy and how much he/she will
purchase. The sensors can be placed in the store and
warehouse, and the data can be gathered from the internet,
such as shopping apps and web stores. As we know, to
control the cost of logistics in the supply chain, we need
to pre-allocate specific goods ahead of the peak season,
which could be efficiently investigated by ML solutions
based on the profiles of customers/users. Furthermore,
fast analysis and reaction also play important roles in
supply chain management, which require inference in
a real-time manner. However, the traditional solutions
are inefficient to extract the context so that it is hard
to achieve the hard inference deadlines with satisfied
prediction accuracy.

• In transportation, analysis on the flow data of human
beings as well as the vehicles is the first step to commit
the management of transportation. For example, if the
supply of vehicles meets the need for transportation, it’s
an efficient allocation to the public transportation timings
(e.g., buses timing, subways timing). With dynamical
arrangement of the limited resources, we can lower the
cost of operation when idling or enhance the service

level when busy working. To this point, ML solutions
can provide assistance in a wide range of aspects includ-
ing real-time visualization, prediction, optimization, and
decision support, which surpass the traditional solutions
with simple feedback controls.

Note that we have confirmed the soft/hard1 guarantee of
the real-time manner in each ML/DL-based solution through
a comprehensive investigation in literature and selecting sev-
eral representative research/application studies to present in
Table II.

V. DISCUSSION AND FUTURE RESEARCH

A. Towards Machine Learning for Real-Time Systems

As real-time systems have started to be used in various
applications, real-time IoT design faces unprecedented chal-
lenges. Accordingly, new research problems arise to tackle
those challenges. Here, we will discuss a few challenges and
general issues in real-time IoT systems that can be mitigated
by leveraging machine learning algorithms.

• Predictability. Predictability is the expected behavior of
real-time systems. The predictability of the system using
exact analysis becomes impractical with increasing sys-
tem complexity. Therefore, a probabilistic predictability
analysis could be a good alternative to exact analysis
for complex real-time systems. The Mixed-criticality sys-
tem design community has already explored probabilistic
system behaviors for system mode-switch prediction.
Predictability analysis can generally be performed by
leveraging machine learning algorithms on cache/memory
or I/O data access patterns and throughput analysis.

• Malicious Behavior Detection. To defend or recover a
system under attack, detection of the system’s malicious
behavior is imperative. Most of the existing work on run-
time system monitoring for malicious attack detection is
developed for general-purpose systems. There are very
few real-time attack detection methods that are too slow
to recover the system before the deadline or produce
many false alarms. So, there is a gap between two
contradictory goals of fast detection and small false-
positive. Machine learning-based algorithms can play a
vital role in fast malicious attack detection methods with
tolerable false-positive results.

• Real-Time System Recovery. Unlike general-purpose
computing systems, real-time system tasks under attack
cannot be shut down to protect malicious activities as
one of the goals of the attacker is also to shut down the
process. So, it is necessary to develop an attack recovery
method to recover the system instead of simply killing
the infected process. A real-time attack recovery method
using linear approximation is represented in [313]. In the
current approach, the tolerance of the recovery method is
relatively high, and the system can easily reach an unde-
sirable state with a variation of other system parameters.
Therefore, a more secure recovery system is desirable.

1The soft/hard real-time are firstly defined in [2] and used depending on
the type of application.
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Industries Problems Facilities Solutions Applicability

Utilities
(energy, water, gas, and etc.)

• Real-time collection of usage
data

• Demand-supply prediction
• Load balancing
• Dynamic tariff generation

• Sensors and meters for en-
ergy, gas, and water etc.

• Traditional: Historical usage analysis, usage
prediction, demand-supply prediction via statis-
tical tools (e.g., linear regression, SVM [274])

• ML/DL-based: real-time utility prediction and
management based on ML/DL [275]–[277].

• Applicable in real-time manner.

Manufacturing

• Remote monitoring and diag-
nostics in case of failures

• Production line automation

• Supervisory control and
data acquisition systems
(SCADA) [278]

• Programmable logic
controllers (PLCs) [279]

• Cameras
• IoT devices mounted or em-

bedded

• Traditional: Anomaly detection via statistical
strategies (e.g., chi-squrare [280], divide and
conquer [281]).

• ML/DL-based: Anomaly detection and auto-
matic quality monitoring using ML/DL [282]–
[284].

• Applicable in real-time manner.

Healthcare

• Remote expert/doctor consul-
tation/monitoring

• Chronic disease management
• Elderly care
• Wellness and fitness pro-

grams

• Wearable and personal medi-
cal devices

• Smart mobile phones

• Traditional: Historical correlation analysis via
statistical tools [285]–[287].

• ML/DL-based: Anomaly detection in recorded
medical data via ML/DL [288]–[291].

• Applicable in real-time manner.

Insurance

• User data collection (e.g.,
condition of home devices
for home insurance, driving
habits for car insurance)

• Prediction of property damage
or rate of depreciation

• Remote inspection and as-
sessment of damage and ac-
cidents

• Sensors that depict the condi-
tion/usage of the insured en-
tity

• Traditional: Usage pattern detection via statisti-
cal tools [292]–[294].

• ML/DL-based: Anomaly detection and auto-
mated assessment via ML/DL [295]–[298].

• Applicable in real-time manner.

Retailing

• Real-time knowledge of the
customers’ context/profile
(e.g., presence, location,
preference, and so on)

• Monitoring supply chain inven-
tory

• Sensors that can capture end-
user and inventory context
(e.g., RFID, locations sensors,
robots with sensors, special-
ized devices)

• Traditional: Analytic to extract context from raw
data by statistical tools [299]–[301]

• ML/DL-based: Context-aided real-time user
profiling via ML/DL [302]–[305]

• Applicable in real-time manner.

Transportation

• Real-time vehicle tracing and
optimization for logistics and
public transportation systems

• Asset management and track-
ing

• On-board vehicle gateway de-
vices

• RFID tags
• Sensors

• Traditional: Real-time alert to driver/operator,
dashboards/ control panels in command and
control centers using active infrared illuminator
and software implementation [306]–[309]

• ML/DL-based: Visualization, prediction, op-
timization, and decision support systems
for associated transportation systems via
ML/DL [310]–[312]

• Applicable in real-time manner.

TABLE II: Applicability of Machine Learning Techniques in Real-Time IoT Systems/Applications.

Machine learning can be used with more research on this
perspective.

B. Towards Real-Time and Schedulable Machine learning

On the contrary, the deployment of machine learning or
deep learning workloads in IoT systems could also be further
improved in more intelligent and efficient ways with real-
time scheduling. In this section, we separately discuss the
potential future direction in either the inference phase or
training phase of ML, which are two key steps in common
learning procedures.

Inference. Serving ML (especially for DL) inference in a
timely manner is mandatory in a wide range of applications,
such as self-driving and traffic monitoring, existing works,
which intend to reduce inference time using tiny architectures
(e.g., MobileNet [314]) or compressing DNNs, cannot provide
any real-time performance guarantee [1]. In addition to the
real-time performance, high inference accuracy is also required
in these applications. However, larger DNN models with
more parameters and consuming longer inference time usually
deliver higher testing accuracy [315]. Thus, a non-trivial trade-
off between inference complexity and accuracy of DNNs is
desired for real-time DNN inference serving systems design.

In order to balance inference time and accuracy in the design
of the timed systems, researchers have proposed numerous
solutions from the neural networks, and schedulability aspects.
For example, Multi-Scale DenseNet (MSDNet) [315] and
the Approximation-aware Network (APNET) [189], which
we have summarized in previous sections. In addition to

networks, DNNs inference could also be accelerated in the
massive online systems through resource scheduling [316]–
[318]. For example, DART [319] studied to schedule inference
tasks for multiple DNNs on CPU/GPU. PACE [320] proposed
preemptive scheduling algorithms to expedite distributed DNN
training. PREMA [321] proposed preemptive neural process-
ing units for real-time scheduling of DNNs inference tasks. All
these efforts intend to design timed systems for DNN inference
and use preemptive/non-preemptive scheduling techniques to
schedule DNN inference/training tasks over shared resources
(e.g., GPU). However, they all failed to provide schedulability
tests [1] to verify the design of DNNs inference serving
systems or approximate optimal trade-off between accuracy
and inference time under schedulability constraints [1]. Thus,
one of the urgent directions is to design real-time systems
which include the following characteristics,

• The systems can follow the “early-exit”/“sub-network”
strategies to handle the DNNs inference with time-
accuracy trade-off.

• The systems are suggested to treat the scheduling (multi-
task) problem as a constrained optimization problem, with
overall expected inference accuracy as the objective and
utilization-based schedulability tests as constraints.

• To solve the constrained optimization problem (which is
probably NP-hard), the systems require the solvers, which
can approximate the optimal design of the real-time sys-
tem with multiple DNNs inference tasks, under specific
scheduling algorithms (e.g., Earliest Deadline-First (EDF)
and Rate Monotonic Scheduling (RMS) algorithms).
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Training. Beyond the inference task for ML applications,
the training process is also of crucial importance and works as
a resource-dominant part of ML applications. In order to im-
prove the efficiency and effectiveness of resource management
in the whole of an ML application, the traditional routine is to
set a fixed off-chip training model and feed the well-trained
model to a speed-up inference chip (e.g., NNP-I [322]), which
means the resource efficiency is mainly optimized in the in-
ference and its correlated connection part (with a well-trained
model). This brings the following concerns and challenges in
the resource-constrained settings: (1) The lack of adaptability
in the inference model on the chip. The training model is
typically fixed for specific ML tasks, and need to be replaced
(redesign the architecture) and then retrained when a new task
arrives (e.g., transfer face detection to car detection), where
these modifies in the training process is actually resource-
intensive. Thus, along with the limited resource for the training
process, the adaptability of the inference model is lacking in-
deed; (2) The computation-intensive back-propagation issues.
Fully training a deep neural network for a specific application
usually consumes a large amount of time and space resources
due to the process of backpropagation, where actually some
of the weight updating and layer bypassing are redundant and
trivially influence the final result to some degree. Especially
for the convolutional layers which are not highly dependent
on a specific application (e.g., image recognition), it is a
waste of re-calculation for the back-propagation of the layers
when the target application just changes a Little (e.g., form
cat images to dog images classification); (3) The emerging
need of real-time capability and scalability for the resource-
constrained environment. For example, when we apply an
image recognition application on the mobile devices, we need
to consider the trade-off between the limited battery capacity
and the performance of the recognition task (can include
the accuracy of the image classification, the resolution which
can be identified and also the real-time deadlines needed to
be satisfied). Based on the fixed design, the traditional DL
network system is not scalable with the complicated scenario
of the practical resource-constrained environment.

To address the above urgent concerns, a possible adaptive
multi-scale multi-task real-time recourse-constrained neural
network system is in need. The key point is to design a
(re)learnable neural network system which can be adapted to
varieties of tasks and different levels of constrained resources.
Ideally, given the current resource capacity and the real-
time deadline guarantees, the system should automatically
provide efficient models with their performance intervals (e.g.,
accuracy with specific deviation) and time consumption. In
this way, the user can decide to either pursue higher accuracy
or faster computing under current settings. Instead of the
traditional design that separates the training and inference
process, the new real-time neural IoT system should integrate
these two parts. Thus, on top of the whole ML applications,
the resource can be managed in a more intelligent and efficient
way.

Inspired by the recent works [191], [314], [323], a possible
solution can be formed using the early-exit mechanism and the
intermediate classifier. The combination of early-exit layers

and the statistical classifier (e.g., support vector machine and
random forest) can provide fast results without losing much
accuracy compared to a complete CNN or ResNet. In addition,
such a combination will differ from the previous multi-scale
dense network [191], the early-exit layers will be pre-trained
in a multi-task way, where it can obtain the best feature
embeddings of more than one task in only one submodel.
With these early-exit layers, the system can train the submodel
and conduct the inference based on the limited resource while
adapting the multi-task requirement. Note that the efficient
computing in the training and inference part can be controlled
by combinatorial optimization to achieve the goal of real-time
guarantees. At the same time, the deadlines can be met by
carrying out an appropriate degradation of the accuracy in the
final results. Moreover, this future direction has the potential
to be a promising solution as a design of the next-generation
AI neural chip, where it maximally combines the training and
inference process of the neural networks on a single chip and
naturally increases the adaptability and resource-efficiency of
the chip.

VI. CONCLUSION

In this paper, we introduced a survey on the state-of-the-art
machine learning algorithms employed in real-time IoT and
embedded systems. Our survey presented the challenges of im-
plementing machine algorithms, real-time IoT system design
goals achievable through machine learning, and the potential
research gap for accomplishing the goals. The survey was
directed to three broad research problems related to the real-
time IoT and embedded systems – addressing the adaptation
of machine learning algorithms, machine learning algorithms
for scheduling problems, and security & privacy issues related
to the implementation of machine algorithms. We attempted to
summarize all existing machine learning papers on real-time
applications discussing the proposed approaches’ strengths and
weaknesses. Then, we suggested and/or presented research
gaps in the current papers, if any.

We believe machine learning and artificial intelligence
would enormously impact real-time IoT system designs. Al-
though there are significant efforts from the research commu-
nity and system designers, enabling AI-friendly real-time IoTs
is still challenging. Therefore, we presented a section on open
problems and challenges that are yet to be explored.
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