
1

Machine Learning in Real-Time Internet of Things
(IoT) Systems: A Survey

Jiang Bian†, Abdullah Al Arafat†, Haoyi Xiong∗, Jing Li, Li Li,
Hongyang Chen, Jun Wang, Dejing Dou, and Zhishan Guo∗

Abstract—Over the last decade, machine learning (ML) and
deep learning (DL) algorithms have significantly evolved and
been employed in diverse applications such as computer vision,
natural language processing, automated speech recognition, etc.
Real-time safety-critical embedded and IoT systems such as
autonomous driving systems, UAVs, drones, security robots, etc.,
heavily rely on ML/DL-based technologies, accelerated with the
improvement of hardware technologies. The cost of a dead-
line (required time constraint) missed by ML/DL algorithms
would be catastrophic in these safety-critical systems. However,
ML/DL algorithm-based applications have more concerns about
accuracy than strict time requirements. Accordingly, researchers
from the real-time systems community address the strict timing
requirements of ML/DL technologies to include in real-time
systems. This paper will rigorously explore the state-of-the-art
results emphasizing the strengths and weaknesses in ML/DL-
based scheduling techniques, accuracy vs. execution time trade-
off policies of ML algorithms, and security & privacy of learning-
based algorithms in real-time IoT systems.

Index Terms—Internet of Things, Machine learning, Deep
learning, Scheduling, Real-time systems.

I. INTRODUCTION

Real-time systems (RTS) design must have both functional
and temporal correctness [1], [2]. Thus, real-time systems
are traditionally designed with temporally predictable and
deterministic algorithms. For instance, before implementing an
online scheduler, the regular real-time scheduling algorithms
have to perform (exact or sufficient only) deterministic (finite
time) offline feasibility (also known as schedulability) tests [1].
However, the feasibility test of the scheduling algorithms be-
comes highly complicated (in most cases intractable) with the
underlying system heterogeneity and inter-and intra-dependent
tasks [3]. Hence, until recently, RTS was restricted to only
safety- and mission-critical systems such as avionics, space-

This research was supported, in part, by the National Science Foundation
(USA) under Grant Numbers CNS–1948457, CNS–1850851, PPoSS-2028481,
and OIA–1937833.

Abdullah Al Arafat, Jun Wang and Zhishan Guo (and Jiang Bian)
are (were) with the Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL, USA (email: {abdullah.arafat,
bjbj11111}@Knights.ucf.edu, {Jun.Wang,zsguo}@ucf.edu).

Jiang Bian, Haoyi Xiong and Dejing Dou are with Big Data Lab, Baidu Inc.,
Beijing, China (email: {bianjiang03,xionghaoyi,doudejing}@baidu.com).

Jing Li is with the Department of Computer Science, New Jersey Institute
of Technology, Newark, NJ, USA (email: jingli@njit.edu).

Hongyang Chen is with Research Center for Intelligent Network, Zhejiang
Lab, Hangzhou, Zhejiang, China. (email: dr.h.chen@ieee.org).

Li Li is with Department of Computer and Information Science, University
of Macau, Tapia, Macao (email: li.li@siat.ac.cn).

† The first two authors contributed equally to this work.
∗ Corresponding Authors: Zhishan Guo and Haoyi Xiong.

craft, etc., with dedicated proprietary hardware platforms and
simple task models.

Nonetheless, with the revolution of embedded cyber-
physical systems and the internet of things (IoT) (thanks to the
rapid advancement of hardware, software, and communication
technologies) — RTS has been ubiquitously used in numerous
domains, including healthcare such as implantable devices,
transportation such as autonomous vehicles, smart-cities such
as smart grids, and industrial environments such as drone,
robots, etc. One fundamental similarity among these increas-
ingly complex cyber-physical systems is that the systems are
interacting with the physical world with excellent efficiency,
leveraging a large number of onboard sensors. Thus, the
systems require high computational resources to process the
vast amount of diverse data from onboard sensors.

The emerging applications of RTS pose a couple of chal-
lenges: a) it requires a heterogeneous hardware platform
consisting of CPUs (multi-core), GPUs, or specialized ac-
celerators [4], which complicate the resource-sharing models
of RTS. b) the task dependency forms task chains with
multiple arrival rates necessitates the complicated workload
models such as DAGs, GANG task models, etc. Scheduling
such a workload using a deterministic feasibility test upon a
heterogeneous hardware platform is tedious.

Consequently, the RTS community has become interested
in data-driven approaches to deal with many diverse data
sources in RTS applications over the last few years. Fortu-
nately, Machine learning (ML) and deep learning (e.g., deep
neural network (DNN)) have extensively progressed and are
employed in enormous applications unprecedentedly over the
last decade. So, machine learning in RTS, especially the
systems with lots of onboard sensors, has received significant
attention from research communities. Unfortunately, merging
these two prolific research domains poses several critical
challenges for their unparalleled goals. In general, the ML
research community prioritizes ML algorithms’ efficiency or
accuracy, while the temporal correctness of the algorithms has
significantly less importance. Besides, the behavior of ML
algorithms is not deterministic. In contrast, the algorithms’
deterministic behaviors and temporal correctness are critical
in RTS. So, before implementing ML algorithms in RTS,
thorough research in ML algorithms concerning the RTS
requirements are imperative.

Most emerging RTS devices, for example, autonomous
vehicles, drones, etc., interact with the physical world through
onboard sensors (e.g., cameras, radar, LiDAR, IMU, etc.).
Thus, there is a high chance of a vicious attack on physical

2

sensors or sensor data-integrity/injection attack, eventually
damaging the ML model. Therefore, ML algorithms should
be malicious attack resilient and temporally deterministic to be
employed in RTS. Another concern in end-devices is that the
intellectual properties, such as the architecture or parameters of
the ML model, could be stolen through physically monitoring
system behaviors, for example, I/O data throughput, memory-
access patterns, EM signal spoofing, etc.

Contributions. In this literature survey paper, we rigorously
review the current research works on the cross-domain of
RTS and ML that addresses the technological adaptation
requirements mentioned above. We categorize the research
works into the following directions:

• Adaptation of ML algorithms in RTS — We review the
existing papers that address the challenges of adapting
ML algorithms in RTS, categorizing via algorithmic
techniques such as model compression (e.g., pruning,
quantization, knowledge distillation, etc.) and real-time
pipeline of ML algorithms.

• ML algorithms for schedulability analysis — We review
the papers that address the WCET estimation of real-time
workloads, analyze the schedulability of a given workload
for specific underlying hardware platforms guaranteeing
the real-time constraints, and predict the system behavior
(e.g., clairvoyance) through ML algorithms.

• Privacy and security in real-time system — We further
review the works related to the privacy and security of
RTS through deploying ML algorithms.

• Finally, we present several open problems and potential
applications of ML in the real-time system that are yet
to explore.

Throughout the paper, we discuss the strengths and weak-
nesses of proposed/developed solutions and point out the
research gap.

Organization. The rest of the paper is organized as follows.
Section II discusses the background of real-time systems,
specifically the concepts related to the scheduling of real-time
systems and the learning algorithms commonly/potentially
employed in real-time systems. Section III comprehensively
surveys the existing works on machine learning in real-time
IoTs. Section IV presents the applicability of machine learning
algorithms in real-time IoT systems. Section V points out
research gaps and proposes possible employment of machine
learning in real-time IoTs. Finally, the paper concludes in
Section VI.

II. BACKGROUND

In this section, we will briefly discuss the general proper-
ties of real-time IoT system workloads and commonly used
machine learning/deep learning algorithms in real-time IoT
systems.

A. Real-Time IoT Systems

Real-time IoT systems are implemented with a collection
of concurrent tasks in the underlying hardware resources. The
real-time system tasks (or workloads – we use these two terms

interchangeably) need to be scheduled in the available system
resources to meet the timing constraints (e.g., deadline and
worst-case execution-time (WCET), etc.) associated with each
task. Hence, the system designers need to construct a workload
model of the tasks characterizing the resources and timing
requirements of the tasks.

Scheduling problems of a formally described workload
model are traditionally tackled with scheduling algorithms
that guarantee both functional and temporal correctness of the
execution of the task set. The design of scheduling algorithms
depends on the real-time workload model. The real-time
workload models and corresponding scheduling techniques are
well explored in the community [2], [5], [6]. Generally, there
are three types of real-time workloads models based on the
release patterns of a task instance — periodic, sporadic, and
aperiodic tasks. According to Liu and Layland real-time task
model [2], a periodic task upon a uniprocessor system is a
task that releases its instances (jobs) after a specific time
period. In addition, it is assumed that each task can release
infinite instances during the runtime. Note that, depending on
the relation between deadline and period of a task, the task
can be classified as constraint-deadline (deadline less or equal
to period) or implicit-deadline (deadline is equal to period)
task.

In the sporadic task model, the jobs of the task can release
at any time, maintaining a minimum job separation time
(minimum separation time is also referred to as period for
sporadic model). A job of an aperiodic task can arrive at any
time, and there is no periodicity/minimum separation of jobs.
Also, the aperiodic task can be hard-aperiodic tasks where
the released job has a deadline. Furthermore, depending on
the inter-and intra dependency of the jobs, more sophisticated
workload models are developed, such as graph-based workload
models (DAGs, Digraph, etc., – a comprehensive survey on
graph workload models [6]), Gang models [7] etc.

The design of real-time scheduling algorithms has two key
steps — offline verification/certification and online schedul-
ing strategy. Most scheduling problems are known as NP-
Hard problems in a strong sense due to the complexity
(intractability) of the offline certification (schedulability test)
of scheduling algorithms. Therefore, the algorithms are typi-
cally designed with approximation and relaxation, maintain-
ing a sufficient only condition with a lesser (e.g., pseudo-
polynomial) time complexity of the schedulability test. The
scheduling algorithms are designed for two different types
of priority — static priority (task-level fixed priority), where
the priority of each task in the task set is fixed; and dy-
namic priority (job-level fixed priority), where the priority
of a task changes in each job instance depending on the
released jobs of other tasks available in the queue. Real-
time scheduling algorithms include preemptive (active task
instance can be interrupted by a newly released higher priority
task instance) or non-preemptive algorithms, such as Earliest
Deadline First (EDF) [5], Rate-Monotonic (RM) [2], and
Deadline-Monotonic (DM) [8], etc.

The workload scheduling complexity increases when up-
graded from uniprocessor to multiprocessor platform. How-
ever, the uniprocessor scheduling algorithms can still use

3

in a multiprocessor system with substantially modification
techniques such as global scheduling, partitioned scheduling,
etc. [1]. Besides scheduling complexity, assessing the precise
WCET of the jobs is also complicated. In most cases, it
is very challenging to evaluate the exact WCET due to
either unavailability of the system architecture for intellectual
property reasons or the analysis complexity of deterministic
WCET. Therefore, the estimated WCET is very pessimistic
(often add a safety margin to the estimated WCETs), resulting
in poor system utilization.

In modern autonomous systems, the systems typically have
different criticality levels based on the systems’ safety re-
quirements. For instance, connected and autonomous vehicles
(CAVs) have several system criticality requirements following
the safety standards such as ISO26262 — the safety-criticality
levels such as anti-lock braking system, steering, engine
controller, should have higher priority than the infotainment
system, A/C, etc. To address the different criticality levels
of these autonomous systems, Vestal [9] proposed a mixed-
criticality system (MCS) model, which also improves the
system utilization assigning different WCETs to a task for
different system criticality levels (a comprehensive review
on MCS is presented in [10]). All tasks are executed in a
low-critical mode (regular operating mode) with the smallest
WCET values in regular operation. Suppose the system fails to
meet the deadline or over-executes a high-critical task, then the
system switches to the higher system critical level by graceful
degradation or dropping of low-criticality tasks. In addition,
(typically) only high-critical tasks have a timing guarantee in
the higher criticality system mode. The MCS task set uses
relatively low and optimistic WCET in regular operating mode.
Hence, it is possible to derive a data-driven WCET for the task
set, specifically for regular system operation mode.

B. Machine Learning

Machine learning includes a wide range of algorithms
from end-to-end problem-solving algorithms to specific feature
extraction algorithms [11]–[15]. Machine learning algorithms
are typically categorized into three directions: supervised
learning [16], [17], unsupervised learning [18], [19], and rein-
forcement learning [20], [21], which depend on the interaction
or feedback between the learning algorithms and the learning
systems. There are also a huge amount of machine learning
algorithms beyond these three mainstream scopes (or interdis-
ciplinary ones), which are widely used/adopted in real-time
learning systems for some specific tasks. For example, meta
learning for hyper-parameter tuning on real-time embedded
systems [22], real-time traffic classification through semi-
supervised learning [23], and real-time inference and training
for deep learning [24]. Apart from the classical categorization
of machine learning algorithms, we purposely divide the
machine learning algorithms applied in real-time IoT systems
into two branches, which are statistical learning algorithms and
neural network-based learning/deep learning algorithms. The
motivation behind is to comprehensively review the previous
efforts of applying learning algorithms in real-time systems by
task complexity and data complexity. Since the data streams

in modern real-time IoT systems are increasingly large-scale,
dynamic, and heterogeneous, some of the traditional statistical
learning strategies/tools are unable or inefficient to handle the
complicated scenarios, which frequently occur in nowadays
autonomous driving systems, security robots, online signal
processing, etc. For example, the family of support vector
machines [25] (SVMs) (e.g., kernel SVMs) are barely used in
real-time object detection/recognition in autonomous driving
systems due to its shallow architecture and inflexibility com-
pared to the (deep) neural network [26], where any marginal
increase of accuracy matters in such case for safety issue and
(deep) neural network benefits from its ability to tackle large-
scale data, and complicated tasks can beat SVMs in terms
of accuracy under most circumstances [27]–[29]. However,
there is no free lunch for machine learning. For some cases
in real-time IoT systems (e.g., real-time task scheduling),
statistical learning algorithms (comparably shallow one) are
often adopted due to their characteristics of off-the-shelf and
easy-to-train [30], [31] which save a lot of time when handling
the “lite” and urgent tasks.

It is important to note that other than commonly/strictly
defined machine learning algorithms, we discovered a rich
amount of not clear-cut “learning” algorithms which are in-
creasingly adopted in modern real-time IoT systems. These
algorithms most lie in evolutionary computing [32], [33],
stochastic search [34], [35], and other optimization algo-
rithms (e.g., expectation-maximization algorithms [36] and
augmented Lagrangian method [37]) which are rarely recog-
nized as traditional machine learning algorithms.

As shown in Fig. 1, we also summarize the popular branches
of ML algorithm in real-time IoT systems with a taxonomy.
Note that the taxonomy does not cover all the branches of
ML and may differ from the structure of other taxonomies,
especially in ML domains, since we mainly adopt the branches
fulfilling the real-time constraints. In the following subsec-
tions, we will briefly review the most representative and
commonly used learning algorithms in real-time IoT systems
in the above-mentioned three aspects.

1) Statistical Learning Algorithms: As we investigated, the
statistical machine learning algorithms have been widely used
in real-time IoT systems for solving some classic problems
such as classification [38], [39], regression [40], [41] and
clustering [42], [43]. By incorporating prior knowledge and
entropy metric, correlation analysis, inherent statistical struc-
tures of input data, and nonlinear relations, statistical machine
learning algorithms are easy to deploy [44], interpretable [45],
[46] and trustworthy [47] in some of the real-time IoT appli-
cations ranging from traditional real-time scheduling systems
[48], [49] to modern real-time IoT systems [50]–[52]. The
family of these algorithms includes decision trees [53], random
forest [54], Gaussian mixture model [55], naive Bayes [56],
linear regression [57], logistic regression [58], SVM [25],
boosting [59], nearest-neighbor methods [60], Q-learning [61],
principal component analysis (PCA) [62] and so on. How-
ever, the main drawback of these statistical machine learning
algorithms is straightforward, where the overall performance
significantly degrades when either the complexity of tasks
or the scale of data dramatically increases [26], [63]. We

4

Machine Learning in
IoT systems

Neural Network-Based
(Deep) Learning

LeNet, AlexNet,
GoogleLeNet,
VGGNet, etc.

Miscellaneous and Optimization

Hybrid LearningRandom Forest, SVM, Decision Tree, Naive
Bayes, Gaussian Mixture Model, PCA, Boosting,
Linear Regression, Nearest-Neighbor, Logistic

Regression, Q-Learning, etc.

Mathmatical
Optimization

Stochastic
Optimization

Evolutionay
Computing

Statistical Learning

Deep Reinforcement
Learning

Convolutional Neural
Network (CNN)

Semi-supervised
Learning

Fig. 1: Some Popular Machine Learning Branches in Real-Time IoT Systems.

will systematically review and summarize the employment
of statistical machine learning algorithms in real-time IoT
systems in Section III.

2) Neural Network-Based (Deep) Learning Algorithms:
On top of a wide variety of common-used machine learning
algorithms, neural network architectures play an important
role in modern learning-based real-time systems and appli-
cations. One most employed class of ML algorithms exploits
neural network architecture and stack several layers of the
neural network well-known as Deep Learning, or Deep Neural
Network (DNN) [64]–[66]. Frequently used neural network
architectures include fully connected layers (FC-layers) [67],
convolutional neural networks (CNN) [68], recurrent neural
networks (RNN) [69], and residual networks [27], etc. Among
them, CNN and its variation with other networks are the most
popular and highly used deep learning strategy in IoT systems
such as computer vision [70]–[72], natural language process-
ing [73], [74], and activity recognition [75], [76], etc. We
will briefly introduce two of the most popular neural network-
based machine learning applications and their variations in the
following subsections.

a) Convolutional Neural Networks: Convolutional neural
network (CNN) is a class of deep learning algorithms, highly
used in high-dimensional datasets such as images to extract
low-dimensional latent space representations and location in-
variant features [77]. CNN is the building block of the famous
deep learning architectures such as LeNet [78], AlexNet [79],
GoogLeNet [80], VGGNet [81], etc. CNN is consists of
several types of layers, such as Convolution Layers, Pooling
Layers, Activation Layers, Fully-connected layers, etc. As one
of the most common-used modules in deep learning/DNN,
the real-time characteristics and resource consumption are the
prime concerns when applying it to modern real-time IoT
(embedded) systems. We will discuss the current disadvantages
and the corresponding solutions for deploying CNN on real-
time IoT systems in Section III.B.1.

b) Deep Reinforcement Learning: Reinforcement learn-
ing is a branch of machine learning technique, which is
designed to solve problems via a feedback system including
rewards and penalties. The so-called agent in reinforcement
learning moves through several states in an environment to

achieve a pre-defined final state, as illustrated in Figure 2. In
the moving process, the agent exploits past experience and
explores new states to achieve its goal. Through trial and
error (penalties versus rewards), the agent will form the final
solution of the problem. The solution consists of a series of
the optimal sequence of states in which the accumulated sum
of rewards is maximized.

Fig. 2: Reinforcement learning framework.

However, due to its limitation on large-scale dynamic data-
environment [21], [82], reinforcement learning intends to
embrace the hug of deep learning in nowadays real-time IoT
applications. As we aforementioned, (deep) neural networks
can be used to approximate specific function, which is espe-
cially useful in RL when the space of states or actions are too
broad to be fully acknowledged. In specific, a neural network
also be capable of approximating a value function, or a policy
function. In other words, neural nets are able to learn mapping
states to values. Instead of storing, indexing, and updating
the mapping information in a lookup table, which is difficult
for the large-scale problem, we train a neural network with
samples in the space of state or action to learn the best strategy
to achieve the goal of the learning process. Moreover, in deep
reinforcement learning, convolutional networks are usually
used to recognize an agent’s state when the input is visual;
e.g. wildlife tracking using deep convolutional UAV [83] in
Figure 3. That is, the UVA leverage the target image caption
as the reward for movement guiding and wildlife tracking.

Rather than the above tasks in machine learning, deep rein-
forcement learning is also a powerful tool to solve combina-
torial optimization and scheduling problems. These problems

5

Deep
Reinforcement

Learning

Camera

Wild LifeBase Station

Decision on
Movement

Maximize
Total Rewards

Reward

Task
Initialization

Fig. 3: Deep Convolutional Agent on UAV.

are often challenging in real-time systems and IoT applica-
tions, e.g., learning near-optimal schedules when the real-time
system is not known in advance [84], resource protection,
and real-time detection [85]. Another branch of representa-
tive applications which massively involve deep reinforcement
learning is wireless communication, especially 6G [86], [87].
Since the wireless communication environment in modern
IoT systems is highly dynamic and complex, the traditional
machine learning algorithms confront the problem of heavy
and inefficient mathematical computations, while deep rein-
forcement learning is capable of sustaining reliable wireless
connectivity for the networks by learning the environment
dynamics. We will further review the employment of deep
reinforcement learning in Section III-A.

3) Other Miscellaneous and Optimization Algorithms:
Beyond the scope of typical machine learning algorithms,
we can also observe the rising of hybrid learning strategies
and optimization algorithms in modern real-time IoT systems.
For hybrid learning strategies, semi-supervised learning [88],
[89] is one of the popular directions. In semi-supervised
learning, we intend to form a supervised learning algorithm
leveraging labeled data augmented by unlabeled data. The
amount of unlabeled or partially labeled data is usually
bigger than the amount of labeled data, since the latter is
more expensive and difficult to obtain. Thus, the goal is to
overcome one of the problems of supervised learning (also
the unsupervised learning, where its application spectrum is
limited) – having not enough labeled data. By adding cheap
and abundant unlabeled data, we are hoping to build a better
model than using supervised learning alone. Although semi-
supervised learning sounds like a reasonable approach, the
practical employment is constrained by certain assumptions
(manifold, cluster, or smoothness assumption [90]), which are
more likely to be violated in real-time system settings. For
example, when handling the real-time streaming data, semi-
supervised learning would confront the issue of false self-
training [23], [91] (mistake can re-enforce themselves) due
to the fact that we rarely observe the true label especially in
a real-time manner so as to be trapped into a wrong direction
of learning (father and farther from the true manifold of data
itself).

Another branch is the well-known optimization strategies
(aka mathematical optimization) [92]–[94] which are not typi-

cally categorized into traditional machine learning algorithms.
Although we often rely on them to solve the machine learning
problems, e.g., stochastic optimization [95], [96] for Back-
propagation in training neural networks, the optimization algo-
rithms could be independent of machine learning and provide
a solid guide or approximation for the objectives in real-
time IoT systems. As one of the representatives, evolutionary
computing [32] has some of the practical advantages to be
employed especially in real-time scheduling, which include the
flexibility of the optimizing procedure, as well as their ability
to self-adapt the search for optimum solutions on the fly.
Specifically, each new generation is produced by stochastically
removing less desired solutions and introducing small random
changes, where this mechanism is naturally suitable for some
extensive and creative searching, e.g., generate schedulability
test [97], [98] or response time analysis [99]–[101] in real-
time IoT systems. With such an evolutionary optimization
algorithm, we can automatically explore the possible formation
of schedulability tests which saves a lot of effort by manual
checking and proofing. We will further review the related
work which involves these miscellaneous and optimization
algorithm algorithms in the following sections.

III. ML IN REAL-TIME IOT SYSTEMS

In this section, we will review the existing and potential
of machine learning, deep learning and miscellaneous algo-
rithms to employ in real-time IoT systems. These algorithms
range from almost all the popular branches in Section II.B
and we are not going to dive into any specific branch but
with a well-designed taxonomy of employment to showcase
the relationship between ML algorithms and real-time IoT
systems. Note that although hard-ware design also involves
many ML-based algorithms and plays an important role in a
real deployment, we mainly focus on the software level due
to our core expertise and limited space. To fully investigate
the entire paradigm, we initialize the discussion from two
key components in the real-time IoT systems, which are ML-
based Learning Algorithm and Real-Time scheduler. For the
learning algorithm, it could play the role of either assisting the
operation of the IoT system in a real-time manner or a target
task to be scheduled to achieve the system level real-time and
other optimization objectives. Simultaneously, the real-time
scheduler is in charge of scheduling the task to guarantee
the characteristics of hard/soft real-time in IoT systems, in
which the learning algorithms could enhance the efficiency and
efficacy of the scheduling process. For specific applications,
the real-time scheduler on the contrary can guide the learning
algorithm to generate valid and affordable (by computation
resource in system) solutions with a strong real-time guarantee.
The interaction between these two components derives three
mainstream of integration summarized as i) ML-based learning
algorithms for real-time scheduling, ii) adaptation of ML-
based learning algorithm to make it schedulable and iii) rising
security issues when involving ML-based learning algorithms
in real-time IoT systems. As illustrated in Figure 4, a horizon-
tal tree-like structure shows the hierarchical categorization of
ML employment in real-time IoT systems. Note that security

6

issues increasingly draw attention in recent studies in terms of
a variety of information leakage in real-time IoT systems by
learning-based strategies or side-channel attacks [102], [103].
Thus, we separately review the security issues in real-time
IoT systems on the top of the predefined categories. For the
remaining parts of this section, we will discuss each branch
with its leaves from top to bottom in descending order of
the amount of related literature. The branch subsection will
explore the employment and applications, which consists of
the most popular and exploited leaf topics as follows,

• ML for Scheduling Analysis in Real-Time IoT Systems.
– ML-based Schedulability Analysis.
– ML-based WCET Estimations.
– ML-based System-behavior Prediction.

• Adaptation of ML in Real-Time IoT Systems.
– Model Compression for Real-Time Performance.
– Real-Time Pipeline.

• Security of Real-Time IoT Systems.

ML in Real-Time IoT
systems

ML for Scheduling
Anlysis

ML-based Schedulability Analysis

ML-based WCET Estimations

 ML-based System-Behavior Predictions

Adaptation of ML

Model Compression for IoT Systems

Real-Time Pipeline for IoT Systems

Security & Privacy
Enhencement for ML in IoT Systems

Enhencement via ML for IoT Systems

Fig. 4: The tree structure of ML employment.

For each topic, we will discuss the motivation, scope,
technical details, contribution and remaining challenges of the
related machine learning algorithms and the design of real-
time IoT systems.

A. ML for Scheduling Analysis in Real-Time IoT Systems

Real-time scheduling problems on modern hardware (e.g.,
heterogeneous and multi-processor platform) are highly in-
tractable and often NP-Hard in a strong sense. Traditional
scheduling algorithms (e.g., dynamic and fixed-priority algo-
rithms) are (mostly) approximate, yet often with high time
complexity [104]. To tackle the scheduling problems, machine
learning gets attention from the research community as early
as the pioneering work of Hopfield and Tank [105] which uses
neural networks for optimization purposes. The main challenge
of using neural networks in real-time scheduling problems lies
in the mapping of real-time scheduling constraints into the
neural network setup. Few early attempts to map the real-
time scheduling problem into neural networks to solve the
scheduling problems are [106]–[113]. In the case of mapping
the scheduling problem to the ML-framework, we need to
answer several questions, such as —

• How to design a dataset (e.g., input-output pairs) using
scheduling constraints for the ML-framework?

• How to choose a suitable ML-framework or DNN archi-
tecture for the specified problem?

• How to assign priority to the tasks for efficient model
training and inference?

In [114], Lee et al. proposed ML-based scheduling of fixed-
priority task model. Guo and Baruah [115] developed a single
layer RNN model for a real-time scheduling problem on a
uniprocessor system. Besides considering scheduling prob-
lems, ML-based schedulability analysis, WCET estimation,
and real-time system behavior prediction are getting attention
from the research community. Although these three problems
are interrelated, such as schedulability analysis requires WCET
of each task and real-time system behaviors are highly depen-
dent on the system scheduling policies, analyzing each prob-
lem is tedious for large systems. We will discuss the related
works in these three directions in the following subsections.

1) ML-Based Schedulability Analysis: In real-time systems,
schedulability analysis of a scheduling algorithm has to per-
form before the system’s runtime to guarantee the algorithm’s
timing correctness for a task set. The schedulability analysis is
usually performed based on each task’s worst-case execution
time in the system. A general requirement of schedulability
analysis of scheduling algorithms is determinism. So, the com-
plexity or hardness of schedulability analysis is a significant
concern in designing the scheduling algorithms. Moreover,
the complexity of schedulability analysis increases with the
increment of the cores/processors in the system.

In fact, due to the SWaP (size, weight, and power) lim-
itations and high computational resource requirements of
modern real-time IoTs, the real-time chip design accelerates
the urge to move from single processor to multiprocessors
system (e.g., multiprocessor-system-on-a-chip (MPSoC) [4]).
The multiprocessor system’s schedulability analysis is highly
complicated and, in most cases, NP-Hard or NP-Hard in a
strong sense problem. It also becomes erratic if that schedu-
lability analysis is derived from conventional ways such as
response time analysis [116] based schedulability analysis. To
this end, researchers have become interested in mechanized
schedulability analysis [117] rather than exact analysis. In
[118], Dziurzanski et al. used evolutionary algorithms to semi-
automate response time analysis technique for schedulability
analysis. There are some initial results on mechanized schedu-
lability analysis; however, ML-based schedulability is still
relatively unexplored. ML-based schedulability analysis would
not give the exact schedulability of the scheduling algorithms.
It is also essential to analyze the feasibility and reliability of
ML-based schedulability analysis.

In contrast to real-time systems’ exact parameterized
scheduling problems, real-time routing scheduling problems
are usually formulated as the distribution of latency of each
pair of nodes in the network. A possible shortest path for a
source node to a destination node can be easily found using
the Dijkstra algorithm [119] for worst-case latency along the
path of each intermediate edge. However, such an approach
is very pessimistic. Recently, Agrawal et al. [120] proposed
an RL-based routing algorithm constructing a Q-table using
an optimal routing table of the network, and then they dy-
namically update the Q-table if any changes (e.g., add/drop of
intermediate nodes) occur in the routing table during runtime.

7

Real-time scheduling problem, in general, becomes a large
search problem as system workload increases. RL performs
efficiently for large search space problems, and Bo et al. [121]
formulate the online scheduling problem for a system with
aperiodic workloads using deep-RL. They intuitively modeled
each job as an agent in the RL framework, and formulated the
scheduling decision problem as Markov Game.

2) ML-Based WCET Estimations: The precise WCET cal-
culation requires the process’s executable file (e.g., binary
code, source code, intermediate code, etc.) and detailed knowl-
edge of the target system’s microarchitecture (e.g., cache,
pipeline, branch predictor, etc.) for static analysis. In static
analysis techniques, the (safe) WCET is estimated without
executing the program leveraging the detailed system archi-
tectural knowledge. Therefore, the precise WCET estimation
of the processes or tasks has become extremely difficult either
the hardware architecture (e.g., MPSoCs [4]) becomes too
complex to design a static analysis model or the unavailability
of architectural details for intellectual property reasons. Be-
sides static analysis techniques, two other traditional analytical
methodologies such as end-to-end measurement, and hybrid
analysis techniques [122] (the interested reader may refer to
[123] for a detailed survey on existing WCET estimation tools)
are used to determine the WCETs.

In contrast to static analysis techniques, the end-to-end
measurement techniques execute the process for several sets
of input (without knowing system architecture) and collect
the execution time. Then, WCET is chosen as the maximum
observable execution time or uses statistical extrapolation
with the addition of a safety margin to mitigate the lack of
confidence in the measurement process. One critical draw-
back of measurement-based estimation is the code coverage
problem – it is highly difficult to find inputs that cover
all basic blocks of the target process. In hybrid analysis
methods, the WCET of basic blocks of processes is usually
estimated using measurement-based techniques. The WCET
of the whole process is estimated using a static analysis tool
(e.g., IPET [123]). However, these static analysis tools are
very pessimistic, and the drawback of measurement-based
estimation exists. Therefore, a more dynamic approach for
estimating the WCET is necessary. An alternating approach
of WCET estimation using ML-framework with few early
results are already proposed by [124]–[127]. Huybrechts et
al. developed regression algorithms [124] and deep learning
algorithms [125] based WCET estimation methods for a hybrid
scenario. In ML-based WCET estimation, an ML-based timing
model is developed in the learning phase, and then the model
is used to determine the timing of basic blocks. In the second
phase, modified static analysis tools are used to find the timing
of the whole control flow graph of the target process. Although
ML-based approaches remove the drawback of measurement-
based approaches, the ML model does not guarantee the
perfect timing model of system architecture. Therefore, these
methods are not applicable in safety-critical hard-real-time
systems.

In [9], Vestal presents a varying WCET-based scheduling
technique called mixed-criticality systems to avoid very pes-

simistic WCET’s of tasks in complex systems. As the WCET
estimation became difficult, the mixed-criticality systems used
different levels of WCET’s based on the criticality levels to
improve the average-case performance of the system. In these
mixed-critical or multiple mode systems, the system designer
has the freedom to choose an optimal WCET value for the
lower-critical task. So, the probabilistic WCET estimation
became popular for low-critical tasks. A comprehensive survey
of probabilistic worst-case timing analysis is given in [128]. In
fact, the system complexity affects other system parameters,
such as, the period of the tasks. So, it is often important to
measure the run-time period of the tasks for better dynamic
WCET estimation. Vădineanu and Nasri [40] developed re-
gression algorithms based run time period estimation methods
for real-time tasks in complex systems.

3) ML-based System Behavior Prediction: Real-time IoT
applications are often used in safety-critical systems — a
task missing a deadline can be catastrophic for the system
and endanger human lives. Hence, hard real-time systems
are designed with deterministic behavior to guarantee the
task meets every deadline. The safety-critical systems are
traditionally designed as mixed-criticality systems [9] or multi-
model systems [129]. In mixed-criticality systems, the system
may switch its mode to different safety levels depending
on the system behavior in runtime. Typically, the system is
unaware of such a mode switch event prior to the occurrence
(non-clairvoyant). Therefore, the scheduling algorithms for
these scenarios incur significant overhead (e.g., dramatic in-
creases of system workload demand or execution due to larger
WCET’s in higher critical levels) for the consideration of
sudden mode-switch instances. It is obvious that clairvoyant or
semi-clairvoyant scheduling algorithms perform better than the
non-clairvoyant algorithms [130]. In clairvoyant scheduling
algorithms, the scheduler assumes that the system mode-
switch instant is known before the runtime. In contrast, in
semi-clairvoyant algorithms, the mode-switch instant is known
at the release instant of the job that initiates the system
mode-switch to the higher criticality level. However, there
is a practical implementation of the clairvoyance and semi-
clairvoyance system yet. Recent work on quarter-clairvoyance
(mode-switch instant is predicted in between the release instant
of mode-switch initiator job and the mode-switch instant
of the system), Pythia-MCS [131], leverages the I/O data
throughput of the system. In Pythia-MCS, a statistical mode-
switch instant detector is developed based on data traffic
through I/O buses and both experimentally on the practical
platform and analytically shows that Pythia-MCS performs
better than the non-clairvoyant systems. However, Pythia-MCS
did not use any ML in their design, it may be possible to use
ML-framework to improve the predictability further than the
quarter-clairvoyance.

B. Adaptation of ML in Real-Time IoT Systems

Modern real-time IoT systems increasingly adopt the family
of DNNs or deep learning to embrace the explosive growth of
data scale and problem complexity in big data era. Applying
DNNs can drastically raise the performance of a wide range

8

of applications than using statistical learning algorithms, e.g.,
accuracy in image recognition and feasibility of decision in
autonomous control. However, one of the most significant
challenges is that the real-timeness of the DNNs deployment
is hard to be controlled and guaranteed. Since most of the
DNNs are designed and developed on large-scale computing
platform with powerful GPU clusters for specific performance
boosting, the traditional DNNs is not available for strict timing
requirement when applying to resource-constrained embedded
real-time systems, which is nowadays’ trending environment in
mobile and autonomous IoT systems. To handle the adaptabil-
ity issue of DNNs, two representative directions for overhead
mitigation are come up with in previous studies which are
i) compressing the model for implementation speed-up and
ii) optimizing the system-wise pipeline for real-timeness. We
will summarize the related works and discuss the contributions
from these two directions in the following subsections.

1) Model Compression for Real-Time IoT Systems.: DNNs
with deep learning brings a revolution in the broad domain
of computer vision and natural language processing (NLP).
As one of the most powerful tools, DNNs have a huge
impact on the standard process of industry practices, where
the classical two-stage process (i.e., training and inference) is
widely adopted.

As aforementioned, we design a specific DNN model for
the problem and train the model accordingly with the data
set available, where the training process may take a long time
(e.g., tens of hours or even a few weeks) on a GPU or a cluster
of high-performance CPU. After the training process, we
deploy the model in the target working environment where the
stream of data are fed into the model for real-time inference.
The output we obtained either is used as the final result or as
the intermediate result for the downstream systems. However,
the applications, e.g., autonomous car, and search engines
nowadays require much less latency than before, which means
the deep learning inference is required to be lightning-fast,
usually less than tens of milliseconds for each output. Thus,
different from the traditional academical focus on model
training, the real-time IoT system takes more consideration
on the inference speed, which brings an acceleration on DNN
inference from the hardware and software aspects. In this
work, we mainly investigate the software solution in real-time
IoT systems.

From the algorithm perspective, model compression is one
promising and commonly used method to decrease the latency
of DNN inference and DRAM footprint. It is easy to fit
compressed models in on-chip SRAM cache rather than off-
chip DRAM memory and these models can help the DNNs
work on mobile devices and other stream-data-based appli-
cations, especially the inference speed, memory size, and
the communication bandwidth are constrained hardly. Fully
connected layers are known to be over parametrized in most
state-of-the-art DNN architectures. A lot of previous research
has focused on compressing FC layers, either by bucketing
connection weights (pseudo) randomly using a hash function
or by vector quantization. Network-in-Network is proposed
to replace FC layers with global average pooling, with an

additional linear layer added at the top for better transferability.
Benchmarked on CPU, desktop GPU and mobile GPU, Deep
Compression yields 30× to 50× more compact AlexNet
and VGG-16 models that have 3× to 4× layerwise speedup
and 3× to 7× higher energy efficiency, all without loss of
accuracy on ImageNet. There are several techniques to reduce
network size, for example, pruning the inference networks
[132], quantization of network parameters to avoid floating-
point operations [133], and dropout of less important neurons
[134], etc. We will summarize the main branch of these model
compression techniques and discuss the advantages and the
disadvantages of applying them in real-time IoT systems:

• Pruning. Pruning [132], [138]–[146] intends to remove
redundant, unnecessary connections that are not sensitive
to performance to compress the model (decrease the
number of parameters). This not only helps reduce the
overall model size but also saves on computation time and
energy. As shown in Figure 5, the number of synapses
and neurons are in some degree reduced in the pruning
process.

Before Pruning After Pruning

Pruning
Synapses

Pruning
Neuron

Fig. 5: Pruning on Synapses and Neuron.

• Quantization. The weight parameters are usually stored
as 32-bit floating-point numbers in DNNs. Quantization
is one way to represent these weight parameters through
reducing the number of bits [147]–[151]. The weight
parameters can be customized to 16-bit, 8-bit, 4-bit or
even with 1-bit. Since the number of bits are decreased,
the size of the deep neural network can be significantly
shrunken.

• Knowledge Distillation. Knowledge distillation [152]–
[155] is often used in model training with large-scale
dataset. It is natural thinking to transfer the originally
large and complicated model (well-trained) to a smaller
and compact one. The originally large model is the so-
called teacher network, while the transferred smaller one
is the student network.

• Selective Attention. Selective attention [156]–[159] is a
technique of targeting the interested points, while ignor-
ing the other irrelevant elements or objects. It is derived
from the vision system of human beings [160], [161].
When we stare in a specific direction, we only target one
or a few objects at a time, and other regions are blurred
out.

• Low-Rank Decomposition. Low-rank decomposi-
tion/factorization uses matrix/tensor decomposition to
estimate the informative parameters. A weight matrix A
with m × n dimension and having a rank r is replaced

9

Techniques Pros Cons

Pruning

• Applicable in the process of training and post-training
• Applicable to fully connected networks or convolutional

networks (layers)
• Balance the trade-off between inference time (model

size) with accuracy [135]

• It is not as helpful as replacing with a better architec-
ture [135]

• The model size benefits cannot lead to a significant ben-
efits on implementation latency, especially in common
platforms (e.g., TensorFlow)

Quantization

• Applicable in the process of training and post-training
• Applicable to fully connected networks or convolutional

networks (layers)

• The convergence of the compressed model is affected.
Learning rate is required to be small to ensure a good
performance of the networks [136]

• Since the gradient cannot propagate back through dis-
crete neurons, the traditional back-propagation training is
infeasible. Thus, approximation methods are preferred to
estimating the gradients of the loss function instead [136]

Knowledge Distillation

• The pre-trained teacher network makes the student net-
work easier and faster to train (less training data and
smaller size of the model required)

• Can reduce the size of a network regardless of the
structural difference between the teacher and the student
models

• The student model may require a larger dataset with
a longer training process to train without a pre-trained
teacher model

Selective Attention

• Faster inference
• Smaller model (e.g. a face detector and cropper could be

only 44 KB)
• Accuracy gain (by focusing downstream AI on only the

regions/objects of interest)

• Supports only training from scratch

Low-rank Factorization

• Applicable in the process of training and post-training
• Applicable to fully connected networks or convolutional

networks (layers)
• When applied in the process of training, it can reduce

training time

• Computationally expensive
• Cannot perform global parameters compression
• Factorization requires extensive model retraining to

achieve convergence

Bits Precision

• Float-to-integer transferring simultaneously reduces the
size of storage as well as computational cost

• It is flexible to use any number of bits to perform the DNN
operations

• Binarization techniques can achieve a high-order com-
pression without much performance degradation

• It is time-consuming to select an optimal number of bits
for the specific estimation

• Complexity from float to integer along with a higher
accuracy compromise

Transfer Learning

• A small size of data set is adequate for the training
process of the transferred domain

• No more training from scratch saves a lot of time and
computation resource

• The target domain needs to be similar with the initial
domain

• Can not remove layers with confidence to reduce the
number of parameters

Early Exit

• Applicable during and after training
• Availability of multiple exit points depending on the goal

of tasks
• The early exit model can integrate with other classifiers

(e.g., SVM)

• The exit point needs to be carefully chosen to avoid a
sharp drop of performance [137]

TABLE I: Main Stream Model Compression Techniques with their Pros and Cons.

by smaller dimension matrices. This technique [162]–
[166] helps by factorizing a large matrix into smaller
matrices. Recently, the tensor-wise decomposition
techniques [167]–[170] are prevailing and frequently
adopted in model compression of deep convolutional
neural networks.

• Bits Precision. For bits precision, the number of bits used
to represent weight parameters is suppressed for reducing
the storage and computation [171]. As an example, we
take 32 bits to store the weight parameters in a matrix
of the DNN model. It can be further compressed to 8
bits by replacing floats with integers. This transforma-
tion from float to integer simultaneously reduces storage
and computation requirements. However, the complexity
might increase during the conversion to achieve higher
accuracy. The existing researches on bits precision [133],
[172]–[177] are devoted to addressing these issues.

• Transfer Learning. Transfer Learning [178], [179] is

another branch of machine learning technique, where a
model designed for a task is reused as the starting point
for models on the other tasks. It is a prevailing method
in deep learning where pre-trained models are used as
the starting point on computer vision and natural lan-
guage processing tasks given the vast compute and time
resources required to develop neural network models on
these problems, where the pre-trained model then can be
used to transfer to other problems without training from
the scratch which can be regarded as a form of model
compression [156], [180], [181]. Specifically, the most
common strategy is to leverage the transferred/compact
convolutional filters, where special structural convolu-
tional filters are designed to reduce the parameter space
and save storage/computation [181]–[183]

• Early Exit. While DNNs benefit from a vast number of
layers, it’s often the case that a large number of samples
can be classified accurately with much less computation.

10

The related works have been proposed to leverage the
idea of early exiting before the predefined endpoint of
the pipelines. Panda et al. [184] observe that a large
number of samples can be classified easily and require
less processing than some more difficult samples and they
obtain this in terms of energy savings. Surat et al. [185]
investigate a selective approach to exit placement and
criteria for exiting early. Recently, similar works [137],
[186], [187] also intended to reduce the model size via
early exit technique in a wide range of applications.

The best part is, all of the above techniques are complemen-
tary to each other. They can be applied as is or combined with
one or multiple techniques. By using a three-stage pipeline;
pruning, quantization and bits precision to reduce the size of
the pre-trained model, where VGG16 model trained on the
ImageNet dataset was reduced from 550 to 11.3 MB [188],
which saves a huge amount of time in the training phase.
Most of the techniques discussed above can be applied to
pre-trained models, as a post-processing step to reduce the
model size and increase inference speed. In addition, they can
be applied during training as well. Thus, model compression
could be a vital basis for accomplishing the real-timeness in
modern IoT systems since it provides a wide-range of time-
saving techniques to meet the deadline requirement without
much performance degradation. The next step is naturally
about how we implement such model compression techniques
in a real-time pipeline. The practical real-time IoT systems
typically have complicated scenarios which consist of multiple
tasks (e.g., deep learning applications) with periodic/sporadic
constraints, where the simple case-by-case model compression
is no longer valid and is urgent to be adapted.

2) Real-Time Pipeline: Implementing the aforementioned
model compression techniques into real-time IoT systems is
challenging, since most systems are multi-process and ML
models run on shared resources, where the system-wise latency
and accuracy cannot be guaranteed. To better analyze the
bottleneck when we deploy ML or DL in real-time IoT
systems, we summarize the mainstream pipeline [189]–[191]
into three steps in sequential, which are listed as follows,

• Profiling ML models
• Selecting proper ML model for each task
• Scheduling ML tasks in a real-time manner
Before we review each of the steps in detail, we take a brief

look at the classical two-phase procedure in ML especially
for DL (DNN), which are Training and Inference. Training
is a procedure to guide a (deep) neural network to perform
the desired task (i.e., object recognition or the next word
prediction in a sentence) by feeding the data in it, conducting a
trained model for further use. In the training phase, the model
predicts the representation of each data sample based on the
labels. The prediction error then feedback to update the power
of connections between the neurons. Along with the training
process, such connections are continuously adjusted until the
model achieves a satisfying level of prediction accuracy or it
cannot get better anymore.

As shown in Fig. 6, the researcher has prepared a set of
training data containing hundreds of images (e.g., a person,

a bicycle, or a strawberry is labeled for each image). In the
training phase, the model (DNN) makes a prediction on the
images fed to it. Specifically, in the upper training phase of
Fig. 6, the model misclassifies an image as a strawberry which
has a ground-truth label of a bicycle. This error feed-backs
through a so-called back-propagation, where the weights are
adjusted to mitigate the error so that the same image will
not generate the wrong label (with a higher probability to
generate the correct label) in the future predictions. Such a
training phase continues (i.e., feeding images and updating the
weights according to the possible errors) until the predefined
training steps are executed or the desired prediction accuracy
is achieved. In this moment, the model can be regarded as
a trained one and is ready for future prediction tasks on
those unseen images (never fed into the training phase). Note
that the training phase usually consumes a huge amount of
computation resource especially for those large and complex
DNN models. Andrew Ng, who is the former chief scientist
at Baidu’s Silicon Valley Lab, says training one of Baidu’s
Chinese speech recognition models requires not only four
terabytes of training data, but also 20 exaflops of computing
— that’s 20 billion billion math operations — across the entire
training cycle. Thus, the current training is rarely considered to
be real-timely scheduled, while we still explore the potentials
and summarize some possible solutions in Section V.B.2.

Once the training phase is finished, the trained model is
then used to make predictions on the unseen data, which
is the so-called Inference phase in the learning process. As
aforementioned, the training phase involves inference actually
since the forward propagation can be regarded as the classify
the input images for weights updating. In this case, deploying
a trained DNN for inference can be trivial, where usually a
simple forward propagation of the trained model is enough for
a standard Inference phase. Due to this fact, the researchers
prefer to make efforts to improve or optimize inference of
DNN in real-time IoT systems. In the rest of this section,
we summarize the previous works on the inference process of
ML/DNN in three steps to achieve the real-time pipeline.

"Strawberry"

Error

"Bicycle"

"Bicycle"

Forward

Backward

Forward

Model Weights

??????

Strawberry

BicyclePerson

Training

Inference

Lots of
labeled
data!

Fig. 6: The Training and Inference process of DNN [192]

a) Model Profiling: The first step is to construct a trust-
worthy and comprehensive profile of ML models in terms of
execution time, performance (e.g., accuracy) and computation
resource cost. Unless we are accurately informed of these
characteristics, we are barely able to control the timing of
running ML models to solve complex problems in multi-
task scenarios. For the aforementioned three kinds of ML
algorithms, neural network-based (deep) learning is one of

11

the most adaptable and scalable algorithms due to its highly
modularized (e.g., stacked and replaceable layered design)
architecture. Although the training process is uncertain and
time-consuming, once we have the well-trained model, the
time consumption on inference is with small perturbation in an
acceptable range, where we can estimate the relatively accurate
execution time based on the architecture design of specific
DNNs.

Characterizing DL model inference is complex as its perfor-
mance depends on the interplay between different levels of the
HW/SW stack, e.g., frameworks, system libraries, and hard-
ware platforms. A model inference pipeline can be described
as a top-down nested flow. At the top, a model-level evalua-
tion pipeline plays an important role. Three components are
included in this level, which are input pre-processing, model
prediction, and output post-processing. Inside the level of
model prediction, the layer-level components, e.g., convolution
layer, batch normalization layer, softmax layer, etc. Further
within each layer are the GPU kernel-level components, a
sequence of CUDA API calls or GPU kernels invoked by the
layer. It is critical to obtain a holistic view of the execution
to identify and locate performance bottlenecks due to the
complexities of model inference.

Traditional profiling strategies bring a partial view of model
execution. For example in ML profiling on GPUs, in order
to measure the latency of model level, we can insert timing
code in the model prediction step of the inference pipeline.
To capture the layer-level information, we can leverage the
ML framework’s profiling capabilities [193], [194]. Then, to
capture GPU kernel information, we use GPU profilers such as
NVIDIA’s nvprof [195] or Nsight [196]. To correlate profiled
events with model layers, Li et al. propose an across-stack
profiling design named XSP [197] which leverages distributed
tracing to aggregate and correlate the profiles from different
sources into a single timeline trace. Through the leveled
experimentation methodology, XSP copes with the profiling
overhead and accurately captures the profiles at each HW/SW
stack level.

Apart from software and hardware profiling, DNN inference
model offloading to Cloud or Edge network servers is becom-
ing more and more practical with the increasing importance
of Edge Computing. Related work [198] demonstrates that
the current approach of DNN inference profiling without
considering the dynamic system load of the edge device
results in sub-optimal partitioning of the DNN algorithm and
provides a basic solution approach to that. To further mitigate
the DNN profiling challenges in edge computing, another
group of researchers built a framework - Edgent [199] - a
collaborative and on-demand DNN co-inference framework
with device-edge synergy. Edgent has two advantages: I)
adaptive DNN partitioning design benefits the profiling be-
tween device and edge for the purpose of coordinating the
powerful cloud resource and the proximal edge resource for
real-time DNN inference; II) DNN right-sizing that further
reduces computing latency via early exiting inference at an
appropriate intermediate DNN layer. In addition, considering
the potential network fluctuation in real-world deployment,
Edgent is properly designed to specialize in both static and

dynamic network environments.
b) Model Selection: Once we have acknowledged the

characteristics of a wide range of DNN models, the second
step is to match suitable DNN models for specific tasks to meet
the deadline requirement. The goal of such optimization is typ-
ically minimizing the resource consumption and maximizing
the overall model performance (e.g, accuracy in image clas-
sification) simultaneously. However, it is not straightforward
to process DNN-based workloads in real-time IoT systems
equipped with GPU-accelerated platforms, due to the need to
satisfy two (usually) conflicting goals: timing predictability
and resource efficiency. Timing predictability (i.e., meeting
deadline requirement) is one of the most important factors
in the certification required for some time-critical systems,
e.g., autonomous driving systems. Temporal correctness is
crucial to the functional correctness of an autonomous car
(e.g., accomplishing the task of object detection within a
strict latency to signal automatic brake systems). On the other
hand, autonomous cars need low power consumption, due
to their strict size, weight, and power (SWaP) requirements.
Unfortunately, timing predictability and resource efficiency are
usually in conflict. It is reasonable that the former requires
reserving sufficient resources for guaranteeing latency even in
the worst case; while the latter often desires to allocate just
enough resource that barely meets the needs of the current job.

Two branches of efforts have been separately spared either
from efficient computation and anytime prediction. Many prior
studies propose computationally efficient variants of traditional
machine-learning models ([200]–[207]). Most of these studies
focus on how to incorporate the computational requirements
of particular computing features in the training of machine-
learning models such as (gradient-boosted) decision trees.
Apart from these explorations in the training of statistical and
shallow machine learning models, FractalNets [208] performs
anytime prediction by progressively evaluating subnetworks of
the full network and deep architecture. FractalNets are not ex-
plicitly optimized for computation efficiency and with in static
strategy. Rather than static strategy, [209]–[211] are proposed
to reduce the batch computational cost, and adaptively evaluate
neural networks. Specifically, the adaptive computation time
method [209] and its extension [210] perform an adaptive
evaluation on test examples to save batch computational cost,
and focus on skipping units rather than layers. In [212],
a “composer” model is trained to construct the evaluation
network from a set of sub-modules for each test example
(can be regarded as a different task under assignment). The
Feedback Networks [213] enable early predictions by making
predictions in a recurrent fashion, which shares parameters
among classifiers.

On top of these methods, [191] adopts a specially designed
network with multiple classifiers, which are jointly optimized
during training and can directly output confidence scores to
control the evaluation process for each test example. Note
that this work uses a single CNN with multiple intermediate
classifiers that is trained end-to-end. Unfortunately, the afore-
mentioned methods cannot guarantee a relatively strict real-
time manner without exception. Although the characteristic of
“anytime” can improve the efficiency and flexibility of deep

12

learning inference tasks (some take care of both training and
inference phase), the system-level objectives are far from being
accomplished since a trade-off between resource efficiency
and timing predictability should be optimized. In other words,
multiple tasks will compete for the limited resources (with
deadlines) and the real-time IoT system intends to maximize
the overall performance. How to organize Ml/DL workloads
(tasks) in a real-time manner becomes urgent and critical,
where it is natural to solve this issue in the next step to treat
it as a real-time scheduling problem.

c) Model Scheduling: For the third step, previous works
focus on scheduling the ML tasks to fulfill the “conflict”
objective. For general workloads, several recent works have
been done on optimizing latency and energy simultaneously in
multi-core systems [214]–[217]. For example, in autonomous
driving systems, object-detection plays a vital role in dif-
ferent operations, so the object-detection needs to be real-
time obviously. Hence, an end-to-end object-detection analysis
for real-time applications is imperative. In [218], [219], the
execution timing behavior of end-to-end object-detection of
autonomous-driving systems has been analyzed. Based on
timing analysis, Jang et al. [219] proposed three optimization
techniques: a) on-demand resource allocation for capture,
b) zero-slack pipeline, and c) contention-free pipeline. Us-
ing the zero-slack optimization technique, it is possible to
completely avoid the detection mechanism’s queuing delay.
As we investigated, there are not so many works targeting
DL/DNN workloads and exploring their unique characteristics
in performance optimization. A particular aspect of DNNs is
that they have multiple layers, each of which is with different
complexity of computation and a variety of features. [189],
[190] demonstrate that the power consumption pattern differs
dramatically among different layers and with varying system
configurations. The mainstream layer-oblivious energy/latency
optimization algorithms [220], [221] that focus on the general
workload may not be suitable to DNN-based automobiles since
they do not explore and exploit per-layer characteristics.

Moreover, most existing algorithms consider energy opti-
mization in environments with soft timing constraints [222]–
[224]. They improve latency only on a best-effort basis but
clearly cannot obtain the required timing predictability. The
resulting state of affairs is rather unsettling: the revolution of
DNN is enabling dramatically better autonomy and services
in the automobile, but the required timing predictability and
energy efficiency cannot be achieved simultaneously in any
DNN-based automobile system. To handle the rigorous timing
constraints, [189], [190] propose a timing-predictable runtime
system that guarantees hard deadlines of DNN workloads
via efficient approximation. They design a layer-aware sub-
deadline assignment policy to include approximation potential,
a measurement of the effectiveness of approximation on a per-
layer basis. Subsequently, they propose a formulation that can
assign individual approximation requirements to layers based
on their approximation potential. This formulation takes into
consideration the real-world limitations of DNN approxima-
tion. As described in [190], one major drawback of naively
enabling concurrency through resource sharing is the fact that
different DNNs might hardly overlap since their cumulative

resource usage exceeds the capacity limits of GPU. A trending
direction for modern real-time pipeline for DNN is to develop
a runtime solution since the fact that different approximated
configurations of a DNN have different resource utilization
profiles. [189] design and implement a runtime system for
enhanced runtime multitasking performance, which exploits
the mutually supplementary relation between approximation
and resource sharing.

Although [189], [190] provide a complete runtime solution
for a real-time pipeline, it still faces the unschedulable issue
since the dynamic mechanism itself has a limitation when up-
coming tasks (DNN workload) exceed its predefined threshold
(e.g., the next task can never be scheduled based on current
system status). Thus, such a scenario leaves a future direction
to design a clairvoyance system that can not only statically pre-
schedule (i.e., check with schedulability tests and generate an
optimal schedule before the execution) the ML workload based
on the plan given by the user, but also is able to dynamically
adapt to some interruption or insertion of some extra tasks.

C. Privacy and Security in Real-Time IoT Systems

The security and privacy issues have been seriously taken
care of in most modern IoT systems. There exists a wide range
of studies, including at least four major dimensions suggested
by [225]. For the first dimension, the author mentions the
limitation of implementing security in devices (e.g., computing
resource, battery, scheduler) of IoT systems with the related
solutions (e.g., encryption technologies). The second one is
the type of IoT attacks, where the possible attacks could
be physical, remote, local, etc. Then, the third one is the
mechanisms and architectures designed and implemented for
authentication and authorization. The last one is layer-wise
security issues, such as physical and network. While ML/DL
actually plays important roles in all the dimensions.

IoT devices that are more easily compromised compared to
desktop computers have led to a rise in IoT botnet attacks. In
order to mitigate this threat, the authors of [226] have proposed
the use of deep autoencoders (DAE) to detect anomalous
network traffic from compromised IoT devices. Deep learning
with its capabilities such as, high-level feature extraction
capability, self-taught, and compression capabilities make it
an ideal hidden pattern discovery that aids in discriminating
attacks from benign traffic. Therefore, study [227] proposes a
deep learning approach based on Stochastic Gradient Descent
(SGD), which enables the detection of attacks in the social
IoT. Besides, the authors of study [228] have proposed a
deep learning technique that enables intrusion detection in
IoT networks using the Bidirectional LSTM Recurrent Neural
Network (BLSTM RNN). Furthermore, in study [229] the
authors have proposed a deep learning model using LSTM to
detect malware in IoT based on OpCodes sequence. We also
showcase a series of representative works applying ML/DL in
IoT systems which is across multiple dimensions. The authors
of study [230] have introduced a framework for IoT based on
Software Defined Networking (SDN). In study [231] the au-
thors have discussed that IoT applications face major security
issues in confidentiality, integrity, privacy, and availability. The

13

authors of study [232] have proposed a deep learning approach
with Dense Random Neural networks (DRNN) to predict the
probability of an ongoing network attack based on the packet
capture. Study [233] proposes a model that uses LSTM and
CNN to distinguish ransomware and goodware in networks.

However, none of the above studies has involved real-time
as a constraint to applying ML/DL in IoT systems. Compared
to general-purpose computing and networked systems, privacy
and security used to be less concerned with the research
communities of real-time embedded systems, as embedded
systems were assumed to be isolated from an open or adver-
sarial environment [234], [235]. However, in IoT settings [50],
[51], where devices are inter-connected with inter-operations,
privacy and security have become critical issues of real-
time IoT systems with machine learning and data analytic
components [236], [237]. Generally, we categorize the existing
works into two folders as follows.

• Privacy and Security Enhancements for Data Pro-
cessing and Machine Learning over IoTs. As IoT
devices, such as healthcare IoTs for medical purposes,
usually have to aggregate and process information re-
lated to human-subjects [238], [239], there frequently
needs to address the privacy and security issues for
machine learning or data processing algorithms on these
devices. As early as [240], privacy preservation in mobile
crowdsourced sensor networks has been studied, where
authors proposed to leverage anonymous participants to
protect the location privacy of mobile users. Later, to
further lower the privacy and security risk introduced
by the data aggregation procedure [241] in distributed
IoTs, aggregation-free distributed sensing has been pro-
posed in [242] with mobile sensors, where authors pro-
posed using decentralized SGD with multi-party compu-
tation [243] to enhance the compressive crowdsensing
algorithms [244] for spatial-temporal monitoring. Be-
sides data aggregation, machine learning for statistical
supervised learning has been improved and secured for
distributed IoT applications in [243], [245]. Zhang et
al. [246] proposed DeepPar– a privacy preserving and
asynchronous deep learning for industrial IoT over dis-
tributed datasets. For similar purposes, Li et al. [247]
proposed SmartPC that secures the privacy of distributed
datasets in a federated learning framework while mini-
mizing the overall energy consumption on nodes. Rather
than the separation of samples over distributed datasets,
features of the same group of samples might be split and
stored in different nodes. Feng et al. [248] studied a novel
secure gradient boosting machines model (SecureGBM)
to enable federated learning in such settings. In addition
to tackling the privacy and security issues in a distributed
manner, data federation with trusted execution environ-
ments (TEE) [249]–[252] is yet another way to perform
data aggregation and machine learning using trustworthy
infrastructures.

• Privacy and Security Enhancements for IoT Systems
using Data Analytics and Machine Learning. In addi-
tion to securing the privacy and security of machine learn-

ing tasks over IoT systems, machine learning techniques
could also enhance the privacy and security of real-time
IoTs. Specifically, [253] proposed to use learning-based
Deep-Q-Networks to enhance the security and privacy
in IoT-based healthcare systems. The work [254] tried
to enhance IoT Security through automatic authentica-
tion of wireless nodes using In-Situ machine learning
algorithms. Roopak et al. [255] reviewed deep neural
networks used in IoT cyber security. Zolanvari et al. [256]
studied the effects of imbalanced datasets on IoT security
with machine learning. The work [257] studied machine
learning algorithms to classify the risk of IoT security
issues. Sagduyu et al. [258] studied the use of adversarial
learning algorithms to promote the security of IoTs. More
work could be found in following surveys and technical
reviews [259]–[264].

In addition to the above privacy and security issues for
applications of Real-time IoTs with Machine Learning, some
recent works have demonstrated the possibility to attack real-
time schedulers for IoTs through reversing the execution
times and orders of tasks [102], [265], [266] using machine
learning techniques, where the final goal of these attacks is
to interfere the schedule and execution of mission-critical
tasks and make system failures. A possible way to fight
against these attacks is to incorporate random reshuffling in
scheduling [102]. For one of the most popular branches of ML-
based privacy enhancements, federated learning plays a more
important role in modern real-time IoT systems. To construct
reliable and sustainable IoT system, a series of works study
federated learning with respect to different privacy protection
mechanisms. [267], [268] intend to design reasonable incentive
mechanisms to improve the real-time cooperation among the
learning agents. Another group of works [269]–[273] explores
the edge-empowered mechanisms such as Blockchain-based
edge learning and network virtualization to strengthen the
security in the federated learning process. However, the real-
time characteristics and high-standard privacy and security
protection are rarely balanced in the current state-of-the-arts
federated learning strategies. Thus, it is still remained to be
explored further in future studies.

IV. APPLICABILITY OF MACHINE LEARNING IN
REAL-TIME IOT SYSTEMS

In this section, we try to summarize the applicability of
machine learning techniques in modern real-time IoT systems
in terms of industrial practice.

Firstly, we categorize the real-time IoT systems/applications
in main aspects and briefly introduce several industrial prob-
lems with solutions which are divided into the traditional
pipelines and the ML-based techniques. Then, the real-time
characteristics are checked for each ML-based solution. As
shown in Table II, we pick up six representative real-time
IoT systems/applications including utilities, manufacturing,
healthcare, insurance, retailing, and transportation. The spe-
cific problems and solutions are described as follows.

• In utilities, we are eager to save energy by predicting the
usage and dynamically allocation. The traditional way is

14

to analyze the meters for demand-supply prediction via
statistical tools, which is lagging and does not have a
real-time guarantee. But with those ML analyzers to the
gas, electronics and water, we can store the well-trained
model on the server, predict the trend of usage on the fly,
and dynamically adjust the model. Furthermore, we can
make load balancing and dynamical allocating.

• In manufacturing, there are lots of human resources that
can be saved by a real-time IoT system with cameras
and controllers. The system detects abnormal operation,
alerts, and operates actions accordingly, which can save
lots of resources preventing the fault by predicting it.
The main differences between traditional and ML-based
solutions are 1) the prediction accuracy increases by ML
solutions, and 2) the automation is drastically improved
by ML solutions in the manufacturing management.

• In healthcare, the issue is personalized health history
tracking. If the patient has several wearable devices
that track those data, doctors can have a more accurate
analysis of the patient. And this is far cheaper to track
everyone’s health condition than hiring a personal nurse.
In terms of data analysis from wearable devices, ML
solutions are more intelligent than traditional statistical
tools, where the DL models are more suitable for high
dimensional data and meantime fulfill the real-time con-
straints.

• In insurance, the industry analyzes the property in the
financial papers. But recently, we can leverage the data
integration from personal devices. By collecting and
analyzing those data, we can wisely customize personal
insurance that fits personal situations. Risk estimation
is crucial and can be regarded as a kind of anomaly
detection. Through comprehensive investigation, the ML
solutions demonstrate superiority in terms of real-time
and efficacy.

• In retailing, we intend to predict when will our customer
be, what he/she wants to buy and how much he/she will
purchase. The sensors can be placed in the store and
warehouse, and the data can be gathered from the internet,
such as shopping apps and web stores. As we know, to
control the cost of logistics in the supply chain, we need
to pre-allocate specific goods ahead of the peak season,
which could be efficiently investigated by ML solutions
based on the profiles of customers/users. Furthermore,
fast analysis and reaction also play important roles in
supply chain management, which require inference in
a real-time manner. However, the traditional solutions
are inefficient to extract the context so that it is hard
to achieve the hard inference deadlines with satisfied
prediction accuracy.

• In transportation, analysis on the flow data of human
beings as well as the vehicles is the first step to commit
the management of transportation. For example, if the
supply of vehicles meets the need for transportation, it’s
an efficient allocation to the public transportation timings
(e.g., buses timing, subways timing). With dynamical
arrangement of the limited resources, we can lower the
cost of operation when idling or enhance the service

level when busy working. To this point, ML solutions
can provide assistance in a wide range of aspects includ-
ing real-time visualization, prediction, optimization, and
decision support, which surpass the traditional solutions
with simple feedback controls.

Note that we have confirmed the soft/hard1 guarantee of
the real-time manner in each ML/DL-based solution through
a comprehensive investigation in literature and selecting sev-
eral representative research/application studies to present in
Table II.

V. DISCUSSION AND FUTURE RESEARCH

A. Towards Machine Learning for Real-Time Systems

As real-time systems have started to be used in various
applications, real-time IoT design faces unprecedented chal-
lenges. Accordingly, new research problems arise to tackle
those challenges. Here, we will discuss a few challenges and
general issues in real-time IoT systems that can be mitigated
by leveraging machine learning algorithms.

• Predictability. Predictability is the expected behavior of
real-time systems. The predictability of the system using
exact analysis becomes impractical with increasing sys-
tem complexity. Therefore, a probabilistic predictability
analysis could be a good alternative to exact analysis
for complex real-time systems. The Mixed-criticality sys-
tem design community has already explored probabilistic
system behaviors for system mode-switch prediction.
Predictability analysis can generally be performed by
leveraging machine learning algorithms on cache/memory
or I/O data access patterns and throughput analysis.

• Malicious Behavior Detection. To defend or recover a
system under attack, detection of the system’s malicious
behavior is imperative. Most of the existing work on run-
time system monitoring for malicious attack detection is
developed for general-purpose systems. There are very
few real-time attack detection methods that are too slow
to recover the system before the deadline or produce
many false alarms. So, there is a gap between two
contradictory goals of fast detection and small false-
positive. Machine learning-based algorithms can play a
vital role in fast malicious attack detection methods with
tolerable false-positive results.

• Real-Time System Recovery. Unlike general-purpose
computing systems, real-time system tasks under attack
cannot be shut down to protect malicious activities as
one of the goals of the attacker is also to shut down the
process. So, it is necessary to develop an attack recovery
method to recover the system instead of simply killing
the infected process. A real-time attack recovery method
using linear approximation is represented in [313]. In the
current approach, the tolerance of the recovery method is
relatively high, and the system can easily reach an unde-
sirable state with a variation of other system parameters.
Therefore, a more secure recovery system is desirable.

1The soft/hard real-time are firstly defined in [2] and used depending on
the type of application.

15

Industries Problems Facilities Solutions Applicability

Utilities
(energy, water, gas, and etc.)

• Real-time collection of usage
data

• Demand-supply prediction
• Load balancing
• Dynamic tariff generation

• Sensors and meters for en-
ergy, gas, and water etc.

• Traditional: Historical usage analysis, usage
prediction, demand-supply prediction via statis-
tical tools (e.g., linear regression, SVM [274])

• ML/DL-based: real-time utility prediction and
management based on ML/DL [275]–[277].

• Applicable in real-time manner.

Manufacturing

• Remote monitoring and diag-
nostics in case of failures

• Production line automation

• Supervisory control and
data acquisition systems
(SCADA) [278]

• Programmable logic
controllers (PLCs) [279]

• Cameras
• IoT devices mounted or em-

bedded

• Traditional: Anomaly detection via statistical
strategies (e.g., chi-squrare [280], divide and
conquer [281]).

• ML/DL-based: Anomaly detection and auto-
matic quality monitoring using ML/DL [282]–
[284].

• Applicable in real-time manner.

Healthcare

• Remote expert/doctor consul-
tation/monitoring

• Chronic disease management
• Elderly care
• Wellness and fitness pro-

grams

• Wearable and personal medi-
cal devices

• Smart mobile phones

• Traditional: Historical correlation analysis via
statistical tools [285]–[287].

• ML/DL-based: Anomaly detection in recorded
medical data via ML/DL [288]–[291].

• Applicable in real-time manner.

Insurance

• User data collection (e.g.,
condition of home devices
for home insurance, driving
habits for car insurance)

• Prediction of property damage
or rate of depreciation

• Remote inspection and as-
sessment of damage and ac-
cidents

• Sensors that depict the condi-
tion/usage of the insured en-
tity

• Traditional: Usage pattern detection via statisti-
cal tools [292]–[294].

• ML/DL-based: Anomaly detection and auto-
mated assessment via ML/DL [295]–[298].

• Applicable in real-time manner.

Retailing

• Real-time knowledge of the
customers’ context/profile
(e.g., presence, location,
preference, and so on)

• Monitoring supply chain inven-
tory

• Sensors that can capture end-
user and inventory context
(e.g., RFID, locations sensors,
robots with sensors, special-
ized devices)

• Traditional: Analytic to extract context from raw
data by statistical tools [299]–[301]

• ML/DL-based: Context-aided real-time user
profiling via ML/DL [302]–[305]

• Applicable in real-time manner.

Transportation

• Real-time vehicle tracing and
optimization for logistics and
public transportation systems

• Asset management and track-
ing

• On-board vehicle gateway de-
vices

• RFID tags
• Sensors

• Traditional: Real-time alert to driver/operator,
dashboards/ control panels in command and
control centers using active infrared illuminator
and software implementation [306]–[309]

• ML/DL-based: Visualization, prediction, op-
timization, and decision support systems
for associated transportation systems via
ML/DL [310]–[312]

• Applicable in real-time manner.

TABLE II: Applicability of Machine Learning Techniques in Real-Time IoT Systems/Applications.

Machine learning can be used with more research on this
perspective.

B. Towards Real-Time and Schedulable Machine learning

On the contrary, the deployment of machine learning or
deep learning workloads in IoT systems could also be further
improved in more intelligent and efficient ways with real-
time scheduling. In this section, we separately discuss the
potential future direction in either the inference phase or
training phase of ML, which are two key steps in common
learning procedures.

Inference. Serving ML (especially for DL) inference in a
timely manner is mandatory in a wide range of applications,
such as self-driving and traffic monitoring, existing works,
which intend to reduce inference time using tiny architectures
(e.g., MobileNet [314]) or compressing DNNs, cannot provide
any real-time performance guarantee [1]. In addition to the
real-time performance, high inference accuracy is also required
in these applications. However, larger DNN models with
more parameters and consuming longer inference time usually
deliver higher testing accuracy [315]. Thus, a non-trivial trade-
off between inference complexity and accuracy of DNNs is
desired for real-time DNN inference serving systems design.

In order to balance inference time and accuracy in the design
of the timed systems, researchers have proposed numerous
solutions from the neural networks, and schedulability aspects.
For example, Multi-Scale DenseNet (MSDNet) [315] and
the Approximation-aware Network (APNET) [189], which
we have summarized in previous sections. In addition to

networks, DNNs inference could also be accelerated in the
massive online systems through resource scheduling [316]–
[318]. For example, DART [319] studied to schedule inference
tasks for multiple DNNs on CPU/GPU. PACE [320] proposed
preemptive scheduling algorithms to expedite distributed DNN
training. PREMA [321] proposed preemptive neural process-
ing units for real-time scheduling of DNNs inference tasks. All
these efforts intend to design timed systems for DNN inference
and use preemptive/non-preemptive scheduling techniques to
schedule DNN inference/training tasks over shared resources
(e.g., GPU). However, they all failed to provide schedulability
tests [1] to verify the design of DNNs inference serving
systems or approximate optimal trade-off between accuracy
and inference time under schedulability constraints [1]. Thus,
one of the urgent directions is to design real-time systems
which include the following characteristics,

• The systems can follow the “early-exit”/“sub-network”
strategies to handle the DNNs inference with time-
accuracy trade-off.

• The systems are suggested to treat the scheduling (multi-
task) problem as a constrained optimization problem, with
overall expected inference accuracy as the objective and
utilization-based schedulability tests as constraints.

• To solve the constrained optimization problem (which is
probably NP-hard), the systems require the solvers, which
can approximate the optimal design of the real-time sys-
tem with multiple DNNs inference tasks, under specific
scheduling algorithms (e.g., Earliest Deadline-First (EDF)
and Rate Monotonic Scheduling (RMS) algorithms).

16

Training. Beyond the inference task for ML applications,
the training process is also of crucial importance and works as
a resource-dominant part of ML applications. In order to im-
prove the efficiency and effectiveness of resource management
in the whole of an ML application, the traditional routine is to
set a fixed off-chip training model and feed the well-trained
model to a speed-up inference chip (e.g., NNP-I [322]), which
means the resource efficiency is mainly optimized in the in-
ference and its correlated connection part (with a well-trained
model). This brings the following concerns and challenges in
the resource-constrained settings: (1) The lack of adaptability
in the inference model on the chip. The training model is
typically fixed for specific ML tasks, and need to be replaced
(redesign the architecture) and then retrained when a new task
arrives (e.g., transfer face detection to car detection), where
these modifies in the training process is actually resource-
intensive. Thus, along with the limited resource for the training
process, the adaptability of the inference model is lacking in-
deed; (2) The computation-intensive back-propagation issues.
Fully training a deep neural network for a specific application
usually consumes a large amount of time and space resources
due to the process of backpropagation, where actually some
of the weight updating and layer bypassing are redundant and
trivially influence the final result to some degree. Especially
for the convolutional layers which are not highly dependent
on a specific application (e.g., image recognition), it is a
waste of re-calculation for the back-propagation of the layers
when the target application just changes a Little (e.g., form
cat images to dog images classification); (3) The emerging
need of real-time capability and scalability for the resource-
constrained environment. For example, when we apply an
image recognition application on the mobile devices, we need
to consider the trade-off between the limited battery capacity
and the performance of the recognition task (can include
the accuracy of the image classification, the resolution which
can be identified and also the real-time deadlines needed to
be satisfied). Based on the fixed design, the traditional DL
network system is not scalable with the complicated scenario
of the practical resource-constrained environment.

To address the above urgent concerns, a possible adaptive
multi-scale multi-task real-time recourse-constrained neural
network system is in need. The key point is to design a
(re)learnable neural network system which can be adapted to
varieties of tasks and different levels of constrained resources.
Ideally, given the current resource capacity and the real-
time deadline guarantees, the system should automatically
provide efficient models with their performance intervals (e.g.,
accuracy with specific deviation) and time consumption. In
this way, the user can decide to either pursue higher accuracy
or faster computing under current settings. Instead of the
traditional design that separates the training and inference
process, the new real-time neural IoT system should integrate
these two parts. Thus, on top of the whole ML applications,
the resource can be managed in a more intelligent and efficient
way.

Inspired by the recent works [191], [314], [323], a possible
solution can be formed using the early-exit mechanism and the
intermediate classifier. The combination of early-exit layers

and the statistical classifier (e.g., support vector machine and
random forest) can provide fast results without losing much
accuracy compared to a complete CNN or ResNet. In addition,
such a combination will differ from the previous multi-scale
dense network [191], the early-exit layers will be pre-trained
in a multi-task way, where it can obtain the best feature
embeddings of more than one task in only one submodel.
With these early-exit layers, the system can train the submodel
and conduct the inference based on the limited resource while
adapting the multi-task requirement. Note that the efficient
computing in the training and inference part can be controlled
by combinatorial optimization to achieve the goal of real-time
guarantees. At the same time, the deadlines can be met by
carrying out an appropriate degradation of the accuracy in the
final results. Moreover, this future direction has the potential
to be a promising solution as a design of the next-generation
AI neural chip, where it maximally combines the training and
inference process of the neural networks on a single chip and
naturally increases the adaptability and resource-efficiency of
the chip.

VI. CONCLUSION

In this paper, we introduced a survey on the state-of-the-art
machine learning algorithms employed in real-time IoT and
embedded systems. Our survey presented the challenges of im-
plementing machine algorithms, real-time IoT system design
goals achievable through machine learning, and the potential
research gap for accomplishing the goals. The survey was
directed to three broad research problems related to the real-
time IoT and embedded systems – addressing the adaptation
of machine learning algorithms, machine learning algorithms
for scheduling problems, and security & privacy issues related
to the implementation of machine algorithms. We attempted to
summarize all existing machine learning papers on real-time
applications discussing the proposed approaches’ strengths and
weaknesses. Then, we suggested and/or presented research
gaps in the current papers, if any.

We believe machine learning and artificial intelligence
would enormously impact real-time IoT system designs. Al-
though there are significant efforts from the research commu-
nity and system designers, enabling AI-friendly real-time IoTs
is still challenging. Therefore, we presented a section on open
problems and challenges that are yet to be explored.

REFERENCES

[1] J. Liu, Real-Time Systems. Prentice Hall, 2000. [Online]. Available:
https://books.google.com/books?id=855QAAAAMAAJ

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[3] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-
time tasks: an np-hard problem made easy,” Real-Time Systems, vol. 4,
no. 2, pp. 145–165, 1992.

[4] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip
(mpsoc) technology,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 10, pp. 1701–1713, 2008.

[5] G. C. Buttazzo, Hard real-time computing systems: predictable
scheduling algorithms and applications. Springer Science & Business
Media, 2011, vol. 24.

[6] M. Stigge and W. Yi, “Graph-based models for real-time workload: a
survey,” Real-time systems, vol. 51, no. 5, pp. 602–636, 2015.

https://books.google.com/books?id=855QAAAAMAAJ

17

[7] S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task
systems,” in 2009 30th IEEE Real-Time Systems Symposium. IEEE,
2009, pp. 459–468.

[8] N. C. Audsley, A. Burns, M. Richardson, and A. Wellings, “Deadline
monotonic scheduling,” 1990.

[9] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in IEEE International
Real-Time Systems Symposium (RTSS), 2007, pp. 239–243.

[10] A. Burns and R. Davis, “Mixed criticality systems-a review,” Depart-
ment of Computer Science, University of York, Tech. Rep, pp. 1–69,
2013.

[11] D. Michie, D. J. Spiegelhalter, C. Taylor et al., “Machine learning,”
Neural and Statistical Classification, vol. 13, no. 1994, pp. 1–298,
1994.

[12] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and
feature extraction techniques in machine learning,” in 2014 science and
information conference. IEEE, 2014, pp. 372–378.

[13] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis:
A survey,” Digital Communications and Networks, vol. 4, no. 3, pp.
161–175, 2018.

[14] M. W. Libbrecht and W. S. Noble, “Machine learning applications in
genetics and genomics,” Nature Reviews Genetics, vol. 16, no. 6, pp.
321–332, 2015.

[15] N. Sebe, I. Cohen, A. Garg, and T. S. Huang, Machine learning in
computer vision. Springer Science & Business Media, 2005, vol. 29.

[16] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of su-
pervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 161–168.

[17] T. Hastie, R. Tibshirani, and J. Friedman, “Overview of supervised
learning,” in The elements of statistical learning. Springer, 2009, pp.
9–41.

[18] H. B. Barlow, “Unsupervised learning,” Neural computation, vol. 1,
no. 3, pp. 295–311, 1989.

[19] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning,” in
The elements of statistical learning. Springer, 2009, pp. 485–585.

[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[21] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[22] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in 25th annual conference on neural
information processing systems (NIPS 2011), vol. 24. Neural Infor-
mation Processing Systems Foundation, 2011.

[23] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson,
“Offline/realtime traffic classification using semi-supervised learning,”
Performance Evaluation, vol. 64, no. 9-12, pp. 1194–1213, 2007.

[24] S. Lee and S. Nirjon, “Subflow: A dynamic induced-subgraph strategy
toward real-time dnn inference and training,” in 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2020, pp. 15–29.

[25] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[26] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,”
Large-scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[28] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully
autonomous driving: Systems and algorithms,” in 2011 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2011, pp. 163–168.

[29] A. Uçar, Y. Demir, and C. Güzeliş, “Object recognition and detection
with deep learning for autonomous driving applications,” Simulation,
vol. 93, no. 9, pp. 759–769, 2017.

[30] S. Buschjager, K.-H. Chen, J.-J. Chen, and K. Morik, “Realization of
random forest for real-time evaluation through tree framing,” in 2018
IEEE International Conference on Data Mining (ICDM). IEEE, 2018,
pp. 19–28.

[31] B. Zhou and J. Xu, “An adaptive svm-based real-time scheduling
mechanism and simulation for multiple-load carriers in automobile
assembly lines,” International Journal of Modeling, Simulation, and
Scientific Computing, vol. 8, no. 04, p. 1750048, 2017.

[32] A. E. Eiben, J. E. Smith et al., Introduction to evolutionary computing.
Springer, 2003, vol. 53.

[33] A. E. Eiben and M. Schoenauer, “Evolutionary computing,” Informa-
tion Processing Letters, vol. 82, no. 1, pp. 1–6, 2002.

[34] J. C. Spall, Introduction to stochastic search and optimization: estima-
tion, simulation, and control. John Wiley & Sons, 2005, vol. 65.

[35] H. Kautz and B. Selman, “Pushing the envelope: Planning, proposi-
tional logic, and stochastic search,” in Proceedings of the National
Conference on Artificial Intelligence. Citeseer, 1996, pp. 1194–1201.

[36] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
processing magazine, vol. 13, no. 6, pp. 47–60, 1996.

[37] M. R. Hestenes, “Multiplier and gradient methods,” Journal of opti-
mization theory and applications, vol. 4, no. 5, pp. 303–320, 1969.

[38] E. Rivlin, M. Rudzsky, R. Goldenberg, U. Bogomolov, and S. Lepchev,
“A real-time system for classification of moving objects,” in Object
recognition supported by user interaction for service robots, vol. 3.
IEEE, 2002, pp. 688–691.

[39] T. Radil, P. M. Ramos, F. M. Janeiro, and A. C. Serra, “Pq monitoring
system for real-time detection and classification of disturbances in a
single-phase power system,” IEEE Transactions on Instrumentation and
Measurement, vol. 57, no. 8, pp. 1725–1733, 2008.

[40] Ş. Vădineanu and M. Nasri, “Robust and accurate period inference
using regression-based techniques,” in IEEE Real-Time Systems Sym-
posium (RTSS), 2020, pp. 358–370.

[41] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson, “On the
scalability of real-time scheduling algorithms on multicore platforms:
A case study,” in 2008 Real-Time Systems Symposium. IEEE, 2008,
pp. 157–169.

[42] A. Predescu, C. Negru, M. Mocanu, and C. Lupu, “Real-time clustering
for priority evaluation in a water distribution system,” in 2018 IEEE
International Conference on Automation, Quality and Testing, Robotics
(AQTR). IEEE, 2018, pp. 1–6.

[43] D. Valencia and A. Alimohammad, “A real-time spike sorting system
using parallel osort clustering,” IEEE transactions on biomedical
circuits and systems, vol. 13, no. 6, pp. 1700–1713, 2019.

[44] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and
machine learning forecasting methods: Concerns and ways forward,”
PloS one, vol. 13, no. 3, p. e0194889, 2018.

[45] C. Molnar, Interpretable machine learning. Lulu. com, 2020.
[46] X. Li, H. Xiong, X. Li, X. Wu, X. Zhang, J. Liu, J. Bian, and

D. Dou, “Interpretable deep learning: Interpretations, interpretability,
trustworthiness, and beyond,” 2021.

[47] G. Harman and S. Kulkarni, Reliable reasoning: Induction and statis-
tical learning theory. MIT Press, 2012.

[48] L. Sha, T. Abdelzaher, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, A. K. Mok et al., “Real time scheduling
theory: A historical perspective,” Real-time systems, vol. 28, no. 2, pp.
101–155, 2004.

[49] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM computing surveys (CSUR), vol. 43,
no. 4, pp. 1–44, 2011.

[50] N. Shahid and S. Aneja, “Internet of things: Vision, application areas
and research challenges,” in 2017 International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). IEEE, 2017,
pp. 583–587.

[51] K. K. Patel, S. M. Patel et al., “Internet of things-iot: definition,
characteristics, architecture, enabling technologies, application & future
challenges,” International journal of engineering science and comput-
ing, vol. 6, no. 5, 2016.

[52] L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on
application of machine learning for internet of things,” International
Journal of Machine Learning and Cybernetics, vol. 9, no. 8, pp. 1399–
1417, 2018.

[53] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[54] T. K. Ho, “Random decision forests,” in Proceedings of 3rd interna-
tional conference on document analysis and recognition, vol. 1. IEEE,
1995, pp. 278–282.

[55] L. Xu and M. I. Jordan, “On convergence properties of the em
algorithm for gaussian mixtures,” Neural computation, vol. 8, no. 1,
pp. 129–151, 1996.

[56] I. Rish et al., “An empirical study of the naive bayes classifier,” in
IJCAI 2001 workshop on empirical methods in artificial intelligence,
vol. 3, no. 22, 2001, pp. 41–46.

[57] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley &
Sons, 2012, vol. 329.

[58] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013, vol. 398.

18

[59] R. E. Schapire, “A brief introduction to boosting,” in Ijcai, vol. 99.
Citeseer, 1999, pp. 1401–1406.

[60] L. Devroye and T. J. Wagner, “8 nearest neighbor methods in discrim-
ination,” Handbook of Statistics, vol. 2, pp. 193–197, 1982.

[61] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[62] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[63] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[64] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[65] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[66] L. Deng and D. Yu, “Deep learning: methods and applications,”
Foundations and trends in signal processing, vol. 7, no. 3–4, pp. 197–
387, 2014.

[67] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer Science &
Business Media, 2009.

[68] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,” in
Competition and cooperation in neural nets. Springer, 1982, pp. 267–
285.

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[70] Y. Shen, T. Han, Q. Yang, X. Yang, Y. Wang, F. Li, and H. Wen,
“Cs-cnn: Enabling robust and efficient convolutional neural networks
inference for internet-of-things applications,” IEEE Access, vol. 6, pp.
13 439–13 448, 2018.

[71] N. Krishnaraj, M. Elhoseny, M. Thenmozhi, M. M. Selim, and
K. Shankar, “Deep learning model for real-time image compression
in internet of underwater things (iout),” Journal of Real-Time Image
Processing, vol. 17, no. 6, pp. 2097–2111, 2020.

[72] X. Chen, L. Xie, J. Wu, and Q. Tian, “Cyclic cnn: Image classification
with multi-scale and multi-location contexts,” IEEE Internet of Things
Journal, 2020.

[73] Z. Huang, X. Xu, J. Ni, H. Zhu, and C. Wang, “Multimodal representa-
tion learning for recommendation in internet of things,” IEEE Internet
of Things Journal, vol. 6, no. 6, pp. 10 675–10 685, 2019.

[74] Y.-J. Choi, Y.-W. Lee, and B.-G. Kim, “Residual-based graph con-
volutional network for emotion recognition in conversation for smart
internet of things,” Big Data, 2021.

[75] H. Zhang, Z. Xiao, J. Wang, F. Li, and E. Szczerbicki, “A novel iot-
perceptive human activity recognition (har) approach using multihead
convolutional attention,” IEEE Internet of Things Journal, vol. 7, no. 2,
pp. 1072–1080, 2019.

[76] H. Zou, Y. Zhou, J. Yang, H. Jiang, L. Xie, and C. J. Spanos,
“Deepsense: Device-free human activity recognition via autoencoder
long-term recurrent convolutional network,” in 2018 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2018, pp. 1–6.

[77] N. Van Noord and E. Postma, “Learning scale-variant and scale-
invariant features for deep image classification,” Pattern Recognition,
vol. 61, pp. 583–592, 2017.

[78] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, pp. 84–90, 2017.

[80] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1–9.

[81] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[82] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[83] P. Soriano, F. Caballero, A. Ollero, and C. A. de Tecnologıas Aeroes-
paciales, “Rf-based particle filter localization for wildlife tracking by
using an uav,” in International Symposium of Robotics, 2009.

[84] R. Glaubius, T. Tidwell, C. Gill, and W. D. Smart, “Real-time schedul-
ing via reinforcement learning,” arXiv preprint arXiv:1203.3481, 2012.

[85] W. Liang, W. Huang, J. Long, K. Zhang, K.-C. Li, and D. Zhang, “Deep
reinforcement learning for resource protection and real-time detection
in iot environment,” IEEE Internet of Things Journal, vol. 7, no. 7, pp.
6392–6401, 2020.

[86] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep
reinforcement learning-based intelligent reflecting surface for secure
wireless communications,” IEEE Transactions on Wireless Communi-
cations, vol. 20, no. 1, pp. 375–388, 2020.

[87] H. Yang, Z. Xiong, J. Zhao, D. Niyato, Q. Wu, H. V. Poor, and
M. Tornatore, “Intelligent reflecting surface assisted anti-jamming
communications: A fast reinforcement learning approach,” IEEE trans-
actions on wireless communications, vol. 20, no. 3, pp. 1963–1974,
2020.

[88] D. Guan, W. Yuan, Y.-K. Lee, A. Gavrilov, and S. Lee, “Activity
recognition based on semi-supervised learning,” in 13th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA 2007). IEEE, 2007, pp. 469–475.

[89] Y. Yang, F. Nan, P. Yang, Q. Meng, Y. Xie, D. Zhang, and K. Muham-
mad, “Gan-based semi-supervised learning approach for clinical deci-
sion support in health-iot platform,” IEEE Access, vol. 7, pp. 8048–
8057, 2019.

[90] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews],” IEEE Transactions on
Neural Networks, vol. 20, no. 3, pp. 542–542, 2009.

[91] N. Ghourchian, M. Allegue-Martinez, and D. Precup, “Real-time indoor
localization in smart homes using semi-supervised learning,” in Twenty-
Ninth IAAI Conference, 2017.

[92] J. A. Snyman, Practical mathematical optimization. Springer, 2005.
[93] C. C. Coello, “Evolutionary multi-objective optimization: a historical

view of the field,” IEEE computational intelligence magazine, vol. 1,
no. 1, pp. 28–36, 2006.

[94] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,
“Artificial-intelligence-enabled intelligent 6g networks,” IEEE Network,
vol. 34, no. 6, pp. 272–280, 2020.

[95] D. P. Heyman and M. J. Sobel, Stochastic models in operations
research: stochastic optimization. Courier Corporation, 2004, vol. 2.

[96] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[97] F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with edf scheduling,” IEEE Transactions on Computers, vol. 58, no. 9,
pp. 1250–1258, 2009.

[98] R. I. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests
for fixed priority real-time systems,” IEEE Transactions on Computers,
vol. 57, no. 9, pp. 1261–1276, 2008.

[99] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[100] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis
for mixed criticality systems,” in 2011 IEEE 32nd Real-Time Systems
Symposium. IEEE, 2011, pp. 34–43.

[101] M. Sjodin and H. Hansson, “Improved response-time analysis calcula-
tions,” in Proceedings 19th IEEE Real-Time Systems Symposium (Cat.
No. 98CB36279). IEEE, 1998, pp. 399–408.

[102] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, “Taskshuffler: A sched-
ule randomization protocol for obfuscation against timing inference
attacks in real-time systems,” in 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2016, pp.
1–12.

[103] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache side-
channel attacks and time-predictability in high-performance critical
real-time systems,” in Proceedings of the 55th Annual Design Automa-
tion Conference, 2018, pp. 1–6.

[104] J. Y. Leung, Handbook of scheduling: algorithms, models, and perfor-
mance analysis. CRC press, 2004.

[105] J. J. Hopfield and D. W. Tank, ““neural” computation of decisions
in optimization problems,” Biological cybernetics, vol. 52, no. 3, pp.
141–152, 1985.

[106] T. Ae and R. Aibara, “Programmable real-time scheduler using a
neurocomputer,” Real-Time Systems, vol. 1, no. 4, pp. 351–363, 1990.

[107] C. Cardeira and Z. Mammeri, “Neural networks for multiprocessor
real-time scheduling,” in Proceedings Sixth Euromicro Workshop on
Real-Time Systems. IEEE, 1994, pp. 59–64.

[108] C. Cardeira and Z. Mammeri, “Preemptive and non-preemptive real-
time scheduling based on neural networks,” in Distributed Computer
Control Systems 1995. Elsevier, 1995, pp. 67–72.

[109] C. Cardeira and Z. Mammeri, “Neural network versus max-flow
algorithms for multiprocessor real-time scheduling,” in Proceedings of

19

the Eighth Euromicro Workshop on Real-Time Systems. IEEE, 1996,
pp. 175–180.

[110] C.-s. Zhang, P.-f. Yan, and T. Chang, “Solving job-shop scheduling
problem with priority using neural network,” in [Proceedings] 1991
IEEE International Joint Conference on Neural Networks. IEEE, 1991,
pp. 1361–1366.

[111] M. P. Silva, C. Cardeira, and Z. Mammeri, “Solving real-time schedul-
ing problems with hopfield-type neural networks,” in Proceedings of
the 23rd EUROMICRO Conference: New Frontiers of Information
Technology. IEEE, 1997, pp. 671–678.

[112] R.-M. Chen, “Reducing network and computation complexities in
neural based real-time scheduling scheme,” Applied Mathematics and
Computation, vol. 217, no. 13, pp. 6379–6389, 2011.

[113] S. Yang, D. Wang, T. Chai, and G. Kendall, “An improved constraint
satisfaction adaptive neural network for job-shop scheduling,” Journal
of scheduling, vol. 13, no. 1, pp. 17–38, 2010.

[114] S. Lee, H. Baek, H. Woo, K. G. Shin, and J. Lee, “Ml for rt: Priority
assignment using machine learning,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021.

[115] Z. Guo and S. K. Baruah, “A neurodynamic approach for real-time
scheduling via maximizing piecewise linear utility,” IEEE transactions
on neural networks and learning systems, vol. 27, no. 2, pp. 238–248,
2015.

[116] R. J. Bril, J. J. Lukkien, R. I. Davis, and A. Burns, “Message response
time analysis for ideal controller area network (can) refuted,” proc. of
the 5th Int. Work. on Real-Time Net.(RTN’06), pp. 5–10, 2006.

[117] F. Cerqueira, F. Stutz, and B. B. Brandenburg, “Prosa: A case for
readable mechanized schedulability analysis,” in Euromicro Conference
on Real-Time Systems (ECRTS), 2016, pp. 273–284.

[118] P. Dziurzanski, R. I. Davis, and L. S. Indrusiak, “Synthesizing real-time
schedulability tests using evolutionary algorithms: A proof of concept,”
in IEEE Real-Time Systems Symposium (RTSS), 2019, pp. 43–55.

[119] Y. Deng, Y. Chen, Y. Zhang, and S. Mahadevan, “Fuzzy dijkstra
algorithm for shortest path problem under uncertain environment,”
Applied Soft Computing, vol. 12, no. 3, pp. 1231–1237, 2012.

[120] K. Agrawal, S. Baruah, Z. Guo, J. Li, and S. Vaidhun, “Hard-real-
time routing in probabilistic graphs to minimize expected delay,” in
Real-Time Systems Symposium (RTSS). IEEE, 2020, pp. 63–75.

[121] Z. Bo, Y. Qiao, C. Leng, H. Wang, C. Guo, and S. Zhang, “Developing
real-time scheduling policy by deep reinforcement learning,” in 2021
IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2021, pp. 131–142.

[122] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen
wcet benchmarks: Past, present and future,” in 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[123] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, May 2008.
[Online]. Available: https://doi.org/10.1145/1347375.1347389

[124] T. Huybrechts, S. Mercelis, and P. Hellinckx, “A new hybrid approach
on wcet analysis for real-time systems using machine learning,” in
18th International Workshop on Worst-Case Execution Time Analysis
(WCET). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[125] T. Huybrechts, T. Cassimon, S. Mercelis, and P. Hellinckx, “Introduc-
tion of deep neural network in hybrid wcet analysis,” in International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing.
Springer, 2018, pp. 415–425.

[126] P. Altenbernd, J. Gustafsson, B. Lisper, and F. Stappert, “Early
execution time-estimation through automatically generated timing
models,” Real-Time Syst., vol. 52, no. 6, p. 731–760, Nov. 2016.
[Online]. Available: https://doi.org/10.1007/s11241-016-9250-7

[127] A. Bonenfant, D. Claraz, M. de Michiel, and P. Sotin, “Early
WCET Prediction Using Machine Learning,” in 17th International
Workshop on Worst-Case Execution Time Analysis (WCET 2017), ser.
OpenAccess Series in Informatics (OASIcs), J. Reineke, Ed.,
vol. 57. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, pp. 5:1–5:9. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2017/7307

[128] F. J. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and
T. Vardanega, “Probabilistic worst-case timing analysis: Taxonomy
and comprehensive survey,” ACM Comput. Surv., vol. 52, no. 1, Feb.
2019. [Online]. Available: https://doi.org/10.1145/3301283

[129] A. Burns, “Multi-model systems — an mcs by any other name,” in 8th
International Workshop on Mixed Criticality Systems, 2020.

[130] K. Agrawal, S. Baruah, and A. Burns, “Semi-clairvoyance in mixed-
criticality scheduling,” in 2019 IEEE Real-Time Systems Symposium
(RTSS), 2019, pp. 458–468.

[131] Z. Jiang, K. Yang, N. Fisher, N. Audsley, and Z. Dong, “Pythia-mcs:
Enabling quarter-clairvoyance in i/o-driven mixed-criticality systems,”
in IEEE Real-Time Systems Symposium (RTSS), 2020.

[132] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” arXiv
preprint arXiv:1611.06440, 2016.

[133] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[134] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[135] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” arXiv preprint arXiv:2003.03033, 2020.

[136] Y. Guo, “A survey on methods and theories of quantized neural
networks,” arXiv preprint arXiv:1808.04752, 2018.

[137] Q. Xing, M. Xu, T. Li, and Z. Guan, “Early exit or not: Resource-
efficient blind quality enhancement for compressed images,” in Euro-
pean Conference on Computer Vision. Springer, 2020, pp. 275–292.

[138] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey,
“Faster cnns with direct sparse convolutions and guided pruning,” arXiv
preprint arXiv:1608.01409, 2016.

[139] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[140] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5687–5695.

[141] T. Vieira and J. Eisner, “Learning to prune: Exploring the frontier
of fast and accurate parsing,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 263–278, 2017.

[142] F. Tung, S. Muralidharan, and G. Mori, “Fine-pruning: Joint fine-
tuning and compression of a convolutional network with bayesian
optimization,” arXiv preprint arXiv:1707.09102, 2017.

[143] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural networks,” arXiv preprint
arXiv:1506.02626, 2015.

[144] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058–5066.

[145] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” arXiv preprint arXiv:1608.04493, 2016.

[146] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1389–1397.

[147] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[148] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp.
365–382.

[149] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[150] S. Ye, X. Feng, T. Zhang, X. Ma, S. Lin, Z. Li, K. Xu, W. Wen,
S. Liu, J. Tang et al., “Progressive dnn compression: A key to achieve
ultra-high weight pruning and quantization rates using admm,” arXiv
preprint arXiv:1903.09769, 2019.

[151] Y. Xu, Y. Wang, A. Zhou, W. Lin, and H. Xiong, “Deep neural
network compression with single and multiple level quantization,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[152] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient knowledge distillation
for bert model compression,” arXiv preprint arXiv:1908.09355, 2019.

[153] P. Luo, Z. Zhu, Z. Liu, X. Wang, and X. Tang, “Face model com-
pression by distilling knowledge from neurons,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[154] Z. Yang, L. Shou, M. Gong, W. Lin, and D. Jiang, “Model compression
with two-stage multi-teacher knowledge distillation for web question

https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1007/s11241-016-9250-7
http://drops.dagstuhl.de/opus/volltexte/2017/7307
http://drops.dagstuhl.de/opus/volltexte/2017/7307
https://doi.org/10.1145/3301283

20

answering system,” in Proceedings of the 13th International Confer-
ence on Web Search and Data Mining, 2020, pp. 690–698.

[155] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4133–4141.

[156] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 126–
136, 2018.

[157] A. A. Salah, E. Alpaydin, and L. Akarun, “A selective attention-based
method for visual pattern recognition with application to handwritten
digit recognition and face recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, no. 3, pp. 420–425, 2002.

[158] A. Wong, M. Famouri, and M. J. Shafiee, “Attendnets: Tiny deep
image recognition neural networks for the edge via visual attention
condensers,” arXiv preprint arXiv:2009.14385, 2020.

[159] Y.-F. Ma, X.-S. Hua, L. Lu, and H.-J. Zhang, “A generic framework
of user attention model and its application in video summarization,”
IEEE transactions on multimedia, vol. 7, no. 5, pp. 907–919, 2005.

[160] A. M. Treisman, “Strategies and models of selective attention.” Psy-
chological review, vol. 76, no. 3, p. 282, 1969.

[161] A. H. van der Heijden, Selective attention in vision. Routledge, 2003.
[162] S. Swaminathan, D. Garg, R. Kannan, and F. Andres, “Sparse low rank

factorization for deep neural network compression,” Neurocomputing,
vol. 398, pp. 185–196, 2020.

[163] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models
by low rank and sparse decomposition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
7370–7379.

[164] T. Chen, J. Lin, T. Lin, S. Han, C. Wang, and D. Zhou, “Adaptive
mixture of low-rank factorizations for compact neural modeling,” 2018.

[165] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, “Holistic cnn compression
via low-rank decomposition with knowledge transfer,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 41, no. 12, pp.
2889–2905, 2018.

[166] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

[167] X. Ruan, Y. Liu, C. Yuan, B. Li, W. Hu, Y. Li, and S. Maybank,
“Edp: An efficient decomposition and pruning scheme for convolutional
neural network compression,” IEEE Transactions on Neural Networks
and Learning Systems, 2020.

[168] A.-H. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak,
P. Tichavskỳ, V. Glukhov, I. Oseledets, and A. Cichocki, “Stable low-
rank tensor decomposition for compression of convolutional neural
network,” in European Conference on Computer Vision. Springer,
2020, pp. 522–539.

[169] M. Yin, Y. Sui, S. Liao, and B. Yuan, “Towards efficient tensor
decomposition-based dnn model compression with optimization frame-
work,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 10 674–10 683.

[170] B. Wu, D. Wang, G. Zhao, L. Deng, and G. Li, “Hybrid tensor
decomposition in neural network compression,” Neural Networks, vol.
132, pp. 309–320, 2020.

[171] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and
L. Chang, “Compensated-dnn: energy efficient low-precision deep
neural networks by compensating quantization errors,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

[172] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for
deep learning,” arXiv preprint arXiv:1705.08665, 2017.

[173] S. Lee and S. Nirjon, “Neuro. zero: a zero-energy neural network ac-
celerator for embedded sensing and inference systems,” in Proceedings
of the 17th Conference on Embedded Networked Sensor Systems, 2019,
pp. 138–152.

[174] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[175] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016, pp.
4114–4122.

[176] K. Yang, T. Xing, Y. Liu, Z. Li, X. Gong, X. Chen, and D. Fang,
“cdeeparch: A compact deep neural network architecture for mobile

sensing,” IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp.
2043–2055, 2019.

[177] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2017, pp. 65–74.

[178] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[179] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International conference on artificial neural
networks. Springer, 2018, pp. 270–279.

[180] S. Kim, Y.-K. Noh, and F. C. Park, “Efficient neural network compres-
sion via transfer learning for machine vision inspection,” Neurocom-
puting, vol. 413, pp. 294–304, 2020.

[181] M. A. Gordon, K. Duh, and N. Andrews, “Compressing bert: Studying
the effects of weight pruning on transfer learning,” arXiv preprint
arXiv:2002.08307, 2020.

[182] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1285–1298, 2016.

[183] C. Zhong, X. Mu, X. He, J. Wang, and M. Zhu, “Sar target image
classification based on transfer learning and model compression,” IEEE
Geoscience and Remote Sensing Letters, vol. 16, no. 3, pp. 412–416,
2018.

[184] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 475–480.

[185] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[186] K. Liao, Y. Zhang, X. Ren, Q. Su, X. Sun, and B. He, “A global
past-future early exit method for accelerating inference of pre-trained
language models,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2021, pp. 2013–2023.

[187] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei, “Bert loses
patience: Fast and robust inference with early exit,” arXiv preprint
arXiv:2006.04152, 2020.

[188] Y. Hu, S. Sun, J. Li, X. Wang, and Q. Gu, “A novel channel
pruning method for deep neural network compression,” arXiv preprint
arXiv:1805.11394, 2018.

[189] S. Bateni and C. Liu, “Apnet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2018, pp. 67–79.

[190] S. Bateni, H. Zhou, Y. Zhu, and C. Liu, “Predjoule: A timing-
predictable energy optimization framework for deep neural networks,”
in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018,
pp. 107–118.

[191] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
Weinberger, “Multi-scale dense networks for resource efficient image
classification,” arXiv preprint arXiv:1703.09844, 2017.

[192] IntelAI, “https://www.intel.com/content/www/us/en/artificial-
intelligence/posts/deep-learning-training-and-inference.html,” Blog,
2020.

[193] E. Lind and Ä. Pantigoso Velasquez, “A performance comparison
between cpu and gpu in tensorflow,” 2019.

[194] S. A. Mojumder, M. S. Louis, Y. Sun, A. K. Ziabari, J. L. Abellán,
J. Kim, D. Kaeli, and A. Joshi, “Profiling dnn workloads on a volta-
based dgx-1 system,” in IEEE International Symposium on Workload
Characterization (IISWC), 2018, pp. 122–133.

[195] W. Li, G. Jin, X. Cui, and S. See, “An evaluation of unified memory
technology on nvidia gpus,” in 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 2015, pp.
1092–1098.

[196] N. P. Toolkit, “Nvidia perfkit,” 2014.
[197] C. Li, A. Dakkak, J. Xiong, W. Wei, L. Xu, and W.-m. Hwu, “Xsp:

Across-stack profiling and analysis of machine learning models on
gpus,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2020, pp. 326–327.

21

[198] S. Dey, J. Mondal, and A. Mukherjee, “Offloaded execution of deep
learning inference at edge: Challenges and insights,” in 2019 IEEE In-
ternational Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 2019, pp. 855–861.

[199] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications, 2018, pp. 31–
36.

[200] P. Viola, M. Jones et al., “Robust real-time object detection,” Interna-
tional journal of computer vision, vol. 4, no. 34-47, p. 4, 2001.

[201] A. Grubb and D. Bagnell, “Speedboost: Anytime prediction with uni-
form near-optimality,” in Artificial Intelligence and Statistics. PMLR,
2012, pp. 458–466.

[202] S. Karayev, M. Fritz, and T. Darrell, “Anytime recognition of objects
and scenes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 572–579.

[203] K. Trapeznikov and V. Saligrama, “Supervised sequential classification
under budget constraints,” in Artificial Intelligence and Statistics.
PMLR, 2013, pp. 581–589.

[204] Z. Xu, K. Weinberger, and O. Chapelle, “The greedy miser: Learning
under test-time budgets,” arXiv preprint arXiv:1206.6451, 2012.

[205] Z. Xu, M. Kusner, K. Weinberger, and M. Chen, “Cost-sensitive tree of
classifiers,” in International conference on machine learning. PMLR,
2013, pp. 133–141.

[206] F. Nan, J. Wang, and V. Saligrama, “Feature-budgeted random forest,”
in International conference on machine learning. PMLR, 2015, pp.
1983–1991.

[207] J. Wang, K. Trapeznikov, and V. Saligrama, “Efficient learning by
directed acyclic graph for resource constrained prediction,” arXiv
preprint arXiv:1510.07609, 2015.

[208] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep
neural networks without residuals,” arXiv preprint arXiv:1605.07648,
2016.

[209] A. Graves, “Adaptive computation time for recurrent neural networks,”
arXiv preprint arXiv:1603.08983, 2016.

[210] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov,
and R. Salakhutdinov, “Spatially adaptive computation time for residual
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 1039–1048.

[211] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adap-
tive neural networks for fast test-time prediction,” arXiv preprint
arXiv:1702.07811, 2017.

[212] A. Odena, D. Lawson, and C. Olah, “Changing model behavior at test-
time using reinforcement learning,” arXiv preprint arXiv:1702.07780,
2017.

[213] A. R. Zamir, T.-L. Wu, L. Sun, W. B. Shen, B. E. Shi, J. Malik,
and S. Savarese, “Feedback networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp.
1308–1317.

[214] E. Bini, G. Buttazzo, and G. Lipari, “Minimizing cpu energy in real-
time systems with discrete speed management,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 8, no. 4, pp. 1–23, 2009.

[215] A. Dudani, F. Mueller, and Y. Zhu, “Energy-conserving feedback edf
scheduling for embedded systems with real-time constraints,” ACM
SIGPLAN Notices, vol. 37, no. 7, pp. 213–222, 2002.

[216] J. Heo, P. Jayachandran, I. Shin, D. Wang, T. Abdelzaher, and X. Liu,
“Optituner: On performance composition and server farm energy min-
imization application,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 11, pp. 1871–1878, 2011.

[217] H. Hoffmann, “Coadapt: Predictable behavior for accuracy-aware ap-
plications running on power-aware systems,” in 2014 26th Euromicro
Conference on Real-Time Systems. IEEE, 2014, pp. 223–232.

[218] M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Timing of autonomous driving software: Problem analysis
and prospects for future solutions,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2020, pp. 267–280.

[219] W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-tod: Real-
time object detector with minimized end-to-end delay for autonomous
driving,” in IEEE Real-Time Systems Symposium (RTSS), 2020, pp.
191–204.

[220] H. Zhang and H. Hoffmann, “Maximizing performance under a power
cap: A comparison of hardware, software, and hybrid techniques,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 545–559, 2016.

[221] A. Farrell and H. Hoffmann, “{MEANTIME}: achieving both minimal
energy and timeliness with approximate computing,” in 2016 USENIX
Annual Technical Conference (USENIX ATC’16), 2016, pp. 421–435.

[222] C. Imes, D. H. Kim, M. Maggio, and H. Hoffmann, “Poet: a portable
approach to minimizing energy under soft real-time constraints,” in
21st IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, 2015, pp. 75–86.

[223] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar, “Deepx: A software accelerator for low-
power deep learning inference on mobile devices,” in 2016 15th
ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). IEEE, 2016, pp. 1–12.

[224] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Kr-
ishnamurthy, “Mcdnn: An approximation-based execution framework
for deep stream processing under resource constraints,” in Proceedings
of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, 2016, pp. 123–136.

[225] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and
privacy issues in internet-of-things,” IEEE Internet of Things Journal,
vol. 4, no. 5, pp. 1250–1258, 2017.

[226] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Bre-
itenbacher, and Y. Elovici, “N-baiot—network-based detection of iot
botnet attacks using deep autoencoders,” IEEE Pervasive Computing,
vol. 17, no. 3, pp. 12–22, 2018.

[227] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme
using deep learning approach for internet of things,” Future Generation
Computer Systems, vol. 82, pp. 761–768, 2018.

[228] B. Roy and H. Cheung, “A deep learning approach for intrusion
detection in internet of things using bi-directional long short-term
memory recurrent neural network,” in 2018 28th International Telecom-
munication Networks and Applications Conference (ITNAC). IEEE,
2018, pp. 1–6.

[229] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,
“A deep recurrent neural network based approach for internet of things
malware threat hunting,” Future Generation Computer Systems, vol. 85,
pp. 88–96, 2018.

[230] A. Dawoud, S. Shahristani, and C. Raun, “Deep learning and software-
defined networks: Towards secure iot architecture,” Internet of Things,
vol. 3, pp. 82–89, 2018.

[231] Y. Zhou, M. Han, L. Liu, J. S. He, and Y. Wang, “Deep learning
approach for cyberattack detection,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2018, pp. 262–267.

[232] O. Brun, Y. Yin, E. Gelenbe, Y. M. Kadioglu, J. Augusto-Gonzalez,
and M. Ramos, “Deep learning with dense random neural networks
for detecting attacks against iot-connected home environments,” in
International ISCIS Security Workshop. Springer, Cham, 2018, pp.
79–89.

[233] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi,
R. Khayami, K.-K. R. Choo, and D. E. Newton, “Drthis: Deep
ransomware threat hunting and intelligence system at the fog layer,”
Future Generation Computer Systems, vol. 90, pp. 94–104, 2019.

[234] P. Koopman, “Embedded system security,” Computer, vol. 37, no. 7,
pp. 95–97, 2004.

[235] A. Ruhland, C. Prehofer, and O. Horst, “embsfi: An approach for
software fault isolation in embedded systems,” in Proceedings of the 1st
workshop on security and dependability of critical embedded real-time
systems, Porto, Portugal, 2016, pp. 6–11.

[236] M. Mamdouh, M. A. I. Elrukhsi, and A. Khattab, “Securing the internet
of things and wireless sensor networks via machine learning: A sur-
vey,” in 2018 International Conference on Computer and Applications
(ICCA), 2018.

[237] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine
learning in iot security: Current solutions and future challenges,” IEEE
Communications Surveys and Tutorials, vol. 22, no. 3, pp. 1686–1721,
2020.

[238] H. Xiong, Y. Huang, L. E. Barnes, and M. S. Gerber, “Sensus: a cross-
platform, general-purpose system for mobile crowdsensing in human-
subject studies,” in Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, 2016, pp. 415–
426.

[239] Y. Huang, H. Xiong, K. Leach, Y. Zhang, P. Chow, K. Fua, B. A.
Teachman, and L. E. Barnes, “Assessing social anxiety using gps
trajectories and point-of-interest data,” in Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous
Computing, 2016, pp. 898–903.

[240] H. Xiong, D. Zhang, L. Wang, J. P. Gibson, and J. Zhu, “Eemc:
Enabling energy-efficient mobile crowdsensing with anonymous par-
ticipants,” ACM Transactions on Intelligent Systems and Technology,
vol. 6, no. 3, p. 39, 2015.

22

[241] D. Zhang, L. Wang, H. Xiong, and B. Guo, “4w1h in mobile crowd
sensing,” IEEE Communications Magazine, vol. 52, no. 8, pp. 42–48,
2014.

[242] J. Bian, H. Xiong, Y. Fu, and S. Das, “Cswa: Aggregation-free spatial-
temporal community sensing,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

[243] J. Bian, H. Xiong, W. Cheng, W. Hu, Z. Guo, and Y. Fu, “Multi-party
sparse discriminant learning,” in 2017 IEEE International Conference
on Data Mining (ICDM). IEEE, 2017, pp. 745–750.

[244] L. Wang, D. Zhang, A. Pathak, C. Chen, H. Xiong, D. Yang, and
Y. Wang, “Ccs-ta: quality-guaranteed online task allocation in com-
pressive crowdsensing,” in Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp.
683–694.

[245] J. Bian, H. Xiong, Y. Fu, J. Huan, and Z. Guo, “Mp2sda: Multi-
party parallelized sparse discriminant learning,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 14, no. 3, pp. 1–22,
2020.

[246] X. Zhang, X. Chen, J. K. Liu, and Y. Xiang, “Deeppar and deepdpa:
Privacy preserving and asynchronous deep learning for industrial iot,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 2081–
2090, 2020.

[247] L. Li, H. Xiong, Z. Guo, J. Wang, and C.-Z. Xu, “Smartpc: Hierarchical
pace control in real-time federated learning system,” in 2019 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2019, pp. 406–418.

[248] Z. Feng, H. Xiong, C. Song, S. Yang, B. Zhao, L. Wang, Z. Chen,
S. Yang, L. Liu, and J. Huan, “Securegbm: Secure multi-party gradient
boosting,” in 2019 IEEE International Conference on Big Data (Big
Data). IEEE, 2019, pp. 1312–1321.

[249] Q. Kang, J. Liu, S. Yang, H. Xiong, H. An, X. Li, Z. Feng, L. Wang,
and D. Dou, “Quasi-optimal data placement for secure multi-tenant
data federation on the cloud,” in 2020 IEEE International Conference
on Big Data (Big Data). IEEE, 2020, pp. 1954–1963.

[250] D. C. G. Valadares, A. A. de Carvalho Cesar Sobrinho, A. Perkusich,
and K. C. Gorgonio, “Formal verification of a trusted execution
environment-based architecture for iot applications,” IEEE Internet of
Things Journal, pp. 1–1, 2021.

[251] J. Jang and B. B. Kang, “Securing a communication channel for the
trusted execution environment,” Computers & Security, vol. 83, pp.
79–92, 2019.

[252] G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized iot
data management using blockchain and trusted execution environment,”
in 2018 IEEE International Conference on Information Reuse and
Integration (IRI), 2018, pp. 15–22.

[253] P. M. Shakeel, S. Baskar, V. R. S. Dhulipala, S. Mishra, and M. M.
Jaber, “Maintaining security and privacy in health care system using
learning based deep-q-networks.” Journal of Medical Systems, vol. 42,
no. 10, p. 186, 2018.

[254] B. Chatterjee, D. Das, S. Maity, and S. Sen, “Rf-puf: Enhancing iot
security through authentication of wireless nodes using in-situ machine
learning,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 388–398,
2019.

[255] M. Roopak, G. Y. Tian, and J. Chambers, “Deep learning models for
cyber security in iot networks,” in 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC), 2019, pp.
452–457.

[256] M. Zolanvari, M. A. Teixeira, and R. Jain, “Effect of imbalanced
datasets on security of industrial iot using machine learning,” in
2018 IEEE International Conference on Intelligence and Security
Informatics (ISI), 2018, pp. 112–117.

[257] W. Abbass, Z. Bakraouy, A. Baina, and M. Bellafkih, “Classifying iot
security risks using deep learning algorithms,” in 2018 6th Interna-
tional Conference on Wireless Networks and Mobile Communications
(WINCOM), 2018, pp. 1–6.

[258] Y. E. Sagduyu, Y. Shi, and T. Erpek, “Iot network security from the
perspective of adversarial deep learning,” in 2019 16th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON), 2019, pp. 1–9.

[259] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “Iot security techniques
based on machine learning: How do iot devices use ai to enhance
security?” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 41–
49, 2018.

[260] M. A. Amanullah, R. A. A. Habeeb, F. H. Nasaruddin, A. Gani,
E. Ahmed, A. S. M. Nainar, N. M. Akim, and M. Imran, “Deep learning
and big data technologies for iot security,” Computer Communications,
vol. 151, pp. 495–517, 2020.

[261] S. M. Tahsien, H. Karimipour, and P. Spachos, “Machine learning based
solutions for security of internet of things (iot): A survey,” Journal of
Network and Computer Applications, vol. 161, p. 102630, 2020.

[262] B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik, “Survey on
iot security: Challenges and solution using machine learning, artificial
intelligence and blockchain technology,” in Internet of Things, vol. 11,
2020, p. 100227.

[263] K. D. Ahmed and S. Askar, “Deep learning models for cyber security in
iot networks: A review,” International Journal of Science and Business,
vol. 5, no. 3, pp. 61–70, 2021.

[264] L. Aversano, M. L. Bernardi, M. Cimitile, and R. Pecori, “A systematic
review on deep learning approaches for iot security,” Computer Science
Review, vol. 40, p. 100389, 2021.

[265] C. Gongye, Y. Fei, and T. Wahl, “Reverse-engineering deep neural
networks using floating-point timing side-channels,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2020, pp.
1–6.

[266] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie,
Y. Ding, C. Liu, T. Sherwood, and Y. Xie, “Deepsniffer: A
dnn model extraction framework based on learning architectural
hints,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 385–399. [Online]. Available:
https://doi.org/10.1145/3373376.3378460

[267] W. Y. B. Lim, Z. Xiong, J. Kang, D. Niyato, C. Leung, C. Miao,
and X. Shen, “When information freshness meets service latency in
federated learning: A task-aware incentive scheme for smart industries,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 457–
466, 2020.

[268] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mech-
anism for reliable federated learning: A joint optimization approach
to combining reputation and contract theory,” IEEE Internet of Things
Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.

[269] J. Kang, Z. Xiong, X. Li, Y. Zhang, D. Niyato, C. Leung, and C. Miao,
“Optimizing task assignment for reliable blockchain-empowered fed-
erated edge learning,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 2, pp. 1910–1923, 2021.

[270] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato,
“Federated learning for 6g communications: Challenges, methods, and
future directions,” China Communications, vol. 17, no. 9, pp. 105–118,
2020.

[271] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless
Communications, vol. 27, no. 2, pp. 72–80, 2020.

[272] Y. Qu, C. Dong, J. Zheng, H. Dai, F. Wu, S. Guo, and A. Anpalagan,
“Empowering edge intelligence by air-ground integrated federated
learning,” IEEE Network, vol. 35, no. 5, pp. 34–41, 2021.

[273] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for 6g,” IEEE
Communications Surveys & Tutorials, 2021.

[274] J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, and A. Mohammad,
“Detection of abnormalities and electricity theft using genetic support
vector machines,” in TENCON 2008-2008 IEEE region 10 conference.
IEEE, 2008, pp. 1–6.

[275] M. Mishra, J. Nayak, B. Naik, and A. Abraham, “Deep learning in
electrical utility industry: a comprehensive review of a decade of
research,” Engineering Applications of Artificial Intelligence, vol. 96,
p. 104000, 2020.

[276] T. Han, K. Muhammad, T. Hussain, J. Lloret, and S. W. Baik, “An
efficient deep learning framework for intelligent energy management
in iot networks,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3170–3179, 2020.

[277] N. Dey, S. Fong, W. Song, and K. Cho, “Forecasting energy con-
sumption from smart home sensor network by deep learning,” in
International conference on smart trends for information technology
and computer communications. Springer, 2017, pp. 255–265.

[278] S. A. Boyer, SCADA: supervisory control and data acquisition. In-
ternational Society of Automation, 2009.

[279] K. T. Erickson, “Programmable logic controllers,” IEEE potentials,
vol. 15, no. 1, pp. 14–17, 1996.

[280] N. Ye and Q. Chen, “An anomaly detection technique based on a
chi-square statistic for detecting intrusions into information systems,”
Quality and reliability engineering international, vol. 17, no. 2, pp.
105–112, 2001.

https://doi.org/10.1145/3373376.3378460

23

[281] J. Liu, D. Djurdjanovic, K. A. Marko, and J. Ni, “A divide and conquer
approach to anomaly detection, localization and diagnosis,” Mechanical
Systems and Signal Processing, vol. 23, no. 8, pp. 2488–2499, 2009.

[282] Y. Jiang, W. Wang, and C. Zhao, “A machine vision-based realtime
anomaly detection method for industrial products using deep learning,”
in 2019 Chinese Automation Congress (CAC). IEEE, 2019, pp. 4842–
4847.

[283] C. M. Ryan, A. Parnell, and C. Mahoney, “Real-time anomaly detection
for advanced manufacturing: Improving on twitter’s state of the art,”
arXiv preprint arXiv:1911.05376, 2019.

[284] P. Ferrari, S. Rinaldi, E. Sisinni, F. Colombo, F. Ghelfi, D. Maffei,
and M. Malara, “Performance evaluation of full-cloud and edge-
cloud architectures for industrial iot anomaly detection based on deep
learning,” in 2019 II Workshop on Metrology for Industry 4.0 and IoT
(MetroInd4. 0&IoT). IEEE, 2019, pp. 420–425.

[285] I. Lawrence and K. Lin, “Assay validation using the concordance
correlation coefficient,” Biometrics, pp. 599–604, 1992.

[286] H.-H. Hsu and C.-C. Chen, “Rfid-based human behavior modeling and
anomaly detection for elderly care,” Mobile Information Systems, vol. 6,
no. 4, pp. 341–354, 2010.

[287] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner, “Rule-
based anomaly pattern detection for detecting disease outbreaks,” in
AAAI/IAAI, 2002, pp. 217–223.

[288] H. Ghayvat, S. Pandya, and A. Patel, “Deep learning model for
acoustics signal based preventive healthcare monitoring and activity
of daily living,” in 2nd International Conference on Data, Engineering
and Applications (IDEA). IEEE, 2020, pp. 1–7.

[289] F. Ali, S. El-Sappagh, S. R. Islam, D. Kwak, A. Ali, M. Imran,
and K.-S. Kwak, “A smart healthcare monitoring system for heart
disease prediction based on ensemble deep learning and feature fusion,”
Information Fusion, vol. 63, pp. 208–222, 2020.

[290] X. Wu, C. Liu, L. Wang, and M. Bilal, “Internet of things-enabled real-
time health monitoring system using deep learning,” Neural Computing
and Applications, pp. 1–12, 2021.

[291] M. Parsa, P. Panda, S. Sen, and K. Roy, “Staged inference using condi-
tional deep learning for energy efficient real-time smart diagnosis,” in
2017 39th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC). IEEE, 2017, pp. 78–81.

[292] S. Tennyson and P. Salsas-Forn, “Claims auditing in automobile
insurance: fraud detection and deterrence objectives,” Journal of Risk
and Insurance, vol. 69, no. 3, pp. 289–308, 2002.

[293] S. Viaene, R. A. Derrig, B. Baesens, and G. Dedene, “A comparison
of state-of-the-art classification techniques for expert automobile insur-
ance claim fraud detection,” Journal of Risk and Insurance, vol. 69,
no. 3, pp. 373–421, 2002.

[294] M. Artı́s, M. Ayuso, and M. Guillén, “Detection of automobile in-
surance fraud with discrete choice models and misclassified claims,”
Journal of Risk and Insurance, vol. 69, no. 3, pp. 325–340, 2002.

[295] Y. Wang and W. Xu, “Leveraging deep learning with lda-based text
analytics to detect automobile insurance fraud,” Decision Support
Systems, vol. 105, pp. 87–95, 2018.

[296] R. Singh, M. P. Ayyar, T. V. S. Pavan, S. Gosain, and R. R. Shah,
“Automating car insurance claims using deep learning techniques,” in
2019 IEEE Fifth International Conference on Multimedia Big Data
(BigMM). IEEE, 2019, pp. 199–207.

[297] J. J.-C. Ying, P.-Y. Huang, C.-K. Chang, and D.-L. Yang, “A prelim-
inary study on deep learning for predicting social insurance payment
behavior,” in 2017 IEEE International Conference on Big Data (Big
Data). IEEE, 2017, pp. 1866–1875.

[298] E. Priyanka, M. G. Shankar, S. Tharun, S. Ravisankar, S. N. Saravanan,
B. B. Kumar, and C. Pugazhenthi, “Real-time performance analysis of
multiple parameters of automotive sensor’s can data to predict vehicle
driving efficiency,” International Journal of Computing and Digital
System, 2021.

[299] S. P. Sethi, H. Yan, and H. Zhang, Inventory and supply chain
management with forecast updates. Springer Science & Business
Media, 2005, vol. 81.

[300] Y. M. Lee, F. Cheng, and Y. T. Leung, “Exploring the impact of rfid on
supply chain dynamics,” in Proceedings of the 2004 Winter Simulation
Conference, 2004., vol. 2. IEEE, 2004, pp. 1145–1152.

[301] B. Sahay and J. Ranjan, “Real time business intelligence in supply
chain analytics,” Information Management & Computer Security, 2008.

[302] E. Peters, T. Kliestik, H. Musa, and P. Durana, “Product decision-
making information systems, real-time big data analytics, and deep
learning-enabled smart process planning in sustainable industry 4.0,”
Journal of Self-Governance and Management Economics, vol. 8, no. 3,
pp. 16–22, 2020.

[303] M. Cherrington, Z. J. Lu, Q. Xu, D. Airehrour, S. Madanian, and
A. Dyrkacz, “Deep learning decision support for sustainable asset
management,” in Advances in Asset Management and Condition Mon-
itoring. Springer, 2020, pp. 537–547.

[304] R. Gonzalez, F. Manco, A. Garcia-Duran, J. Mendes, F. Huici, S. Nic-
colini, and M. Niepert, “Net2vec: Deep learning for the network,”
in Proceedings of the Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, 2017, pp. 13–18.

[305] N. Kargah-Ostadi, A. Waqar, and A. Hanif, “Automated real-time
roadway asset inventory using artificial intelligence,” Transportation
Research Record, vol. 2674, no. 11, pp. 220–234, 2020.

[306] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez,
“Real-time system for monitoring driver vigilance,” IEEE Transactions
on Intelligent Transportation Systems, vol. 7, no. 1, pp. 63–77, 2006.

[307] Z. Zhu and Q. Ji, “Real time and non-intrusive driver fatigue mon-
itoring,” in Proceedings. The 7th International IEEE Conference on
Intelligent Transportation Systems (IEEE Cat. No. 04TH8749). IEEE,
2004, pp. 657–662.

[308] Q. Ji and X. Yang, “Real-time eye, gaze, and face pose tracking for
monitoring driver vigilance,” Real-time imaging, vol. 8, no. 5, pp. 357–
377, 2002.

[309] M. J. Flores, J. M. Armingol, and A. de la Escalera, “Real-time warning
system for driver drowsiness detection using visual information,”
Journal of Intelligent & Robotic Systems, vol. 59, no. 2, pp. 103–125,
2010.

[310] D. Tran, H. M. Do, W. Sheng, H. Bai, and G. Chowdhary, “Real-time
detection of distracted driving based on deep learning,” IET Intelligent
Transport Systems, vol. 12, no. 10, pp. 1210–1219, 2018.

[311] A. Theofilatos, C. Chen, and C. Antoniou, “Comparing machine
learning and deep learning methods for real-time crash prediction,”
Transportation research record, vol. 2673, no. 8, pp. 169–178, 2019.

[312] X. Wang, W. Zhang, X. Wu, L. Xiao, Y. Qian, and Z. Fang, “Real-time
vehicle type classification with deep convolutional neural networks,”
Journal of Real-Time Image Processing, vol. 16, no. 1, pp. 5–14, 2019.

[313] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time attack-
recovery for cyber-physical systems using linear approximations,” in
2020 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2020, pp.
205–217.

[314] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[315] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Wein-
berger, “Multi-scale dense networks for resource efficient image clas-
sification,” in International Conference on Learning Representations,
2018.

[316] N. Otterness, V. Miller, M. Yang, J. Anderson, F. D. Smith, and
S. Wang, “Gpu sharing for image processing in embedded real-time
systems,” OSPERT’16, 2016.

[317] H. Zhou, S. Bateni, and C. Liu, “Sˆ 3dnn: Supervised streaming and
scheduling for gpu-accelerated real-time dnn workloads,” in 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2018, pp. 190–201.

[318] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“Gpu scheduling on the nvidia tx2: Hidden details revealed,” in 2017
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2017, pp. 104–
115.

[319] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2019, pp. 392–405.

[320] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce schedul-
ing for expediting distributed dnn training,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 2020, pp.
626–635.

[321] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 220–233.

[322] O. Wechsler, M. Behar, and B. Daga, “Spring hill (nnp-i 1000) intel’s
data center inference chip,” in 2019 IEEE Hot Chips 31 Symposium
(HCS). IEEE Computer Society, 2019, pp. 1–12.

[323] J.-H. Jacobsen, E. Oyallon, S. Mallat, and A. W. Smeulders,
“Multiscale hierarchical convolutional networks,” arXiv preprint
arXiv:1703.04140, 2017.

24

Jiang Bian (Member, IEEE) received the Ph.D.
degree of Computer Engineering in University of
Central Florida, Orlando, FL. He received the
B.Eng degree of Logistics Systems Engineering in
Huazhong University of Science and Technology,
Wuhan, China, in 2014, and the M.Sc degree of
Industrial Systems Engineering in University of
Florida at Gainesville, FL, in 2016. He is currently
with the Big Data Laboratory, Baidu Research, Bei-
jing, China. His research interests include Ubiqui-
tous Computing, and AutoDL.

Abdullah Al Arafat (Student Member, IEEE) is cur-
rently pursuing his Ph.D. in Computer Engineering
at the University of Central Florida (UCF), Orlando,
Florida, USA. He received the BS in Electrical Engi-
neering from Bangladesh University of Engineering
and Technology (BUET), Bangladesh in 2016 and
MS in Computer Engineering from UCF in 2020.
His research interests include Scheduling Theory,
Algorithms, and Real-Time & Intelligent Systems.

Haoyi Xiong (Senior Member, IEEE) received the
Ph.D. degree in computer science from Telecom
SudParis jointly from Université Pierre et Marie
Curie, Évry, France, in 2015. From 2016 to 2018,
he was a Tenure-Track Assistant Professor with the
Department of Computer Science, Missouri Univer-
sity of Science and Technology, Rolla, MO and a
Postdoc at University of Virginia, Charlottesville,
VA from 2015 to 2016. He is currently a Principal
Research Scientist at Big Data Lab, Baidu Research,
Beijing, China, and also a Graduate Faculty Scholar

affiliated to University of Central Florida, Orlando FL. His current research
interests include AutoDL and ubiquitous computing. He has published more
than 70 papers in top computer science conferences and journals.

Jing Li (Member, IEEE) is an Assistant Professor
with the Department of Computer Science, New
Jersey Institute of Technology. She received her
Ph.D. at Washington University in St. Louis in 2017,
where she was advised by Professor Chenyang Lu
and Kunal Agrawal. She received B.S. in com-
puter science from Harbin Institute of Technology
in 2011. Her research interests include real-time
systems, parallel computing, cyber-physical systems,
and reinforcement learning for system design and
optimization. She has high impact publications in

top journals and conferences with 3 outstanding paper awards.

Li Li (Member, IEEE) is currently an assistant
professor in the University of Macau. He received
his Ph.D. degree and M.S. degree in Electrical and
Computer Engineering from Ohio State University,
Columbus, OH, USA in 2018 and 2014 respectively.
He obtained the B.S. degree from Tianjin University
in 2011. He has published in refereed journals and
conference proceedings, such as INFOCOM, RTSS,
ICDCS, NDSS, MM, TMC, TDSC.

Hongyang Chen (Senior Member, IEEE) received
the B.S. and M.S. degrees from Southwest Jiaotong
University, Chengdu, China, in 2003 and 2006, re-
spectively, and the Ph.D. degree from The University
of Tokyo, Tokyo, Japan, in 2011. From 2011 to 2020,
he was a Researcher with Fujitsu Ltd., Tokyo. He is
an Adjunct Professor with Hangzhou Institute for
Advanced Study, University of Chinese Academy of
Sciences, China. He is currently a Senior Research
Expert with Zhejiang Laboratory, China. He has
authored or coauthored 100+ refereed journals and

conference papers in top venues, and has been granted or filed more than
50 PCT patents. His research interests include the IoT, data-driven intelligent
networking and systems, machine learning, localization, location-based big
data, B5G, and statistical signal processing.

Jun Wang (Fellow, IEEE) is a Professor of Com-
puter Engineering; and Director of the Computer
Architecture and Storage Systems (CASS) Labora-
tory at the University of Central Florida, Orlando,
FL, USA. He has conducted extensive research in
the areas of Computer Systems and Data-Intensive
Computing. His specific research interests include
massive storage and file Systems in a local, dis-
tributed, and parallel systems environment. Dr. Wang
is the recipient of the National Science Foundation
Early Career Award 2009 and the Department of

Energy Early Career Principal Investigator Award 2005. He has authored over
150 publications in premier journals and conferences.

Dejing Dou (Senior Member, IEEE) is the Head of
Big Data Lab (BDL) and Business Intelligence Lab
(BIL) at Baidu Research. He is also a full Profes-
sor (on leave) from the Computer and Information
Science Department at the University of Oregon and
has led the Advanced Integration and Mining (AIM)
Lab since 2005. He has been the Director of the NSF
IUCRC Center for Big Learning (CBL) since 2018.
He was a visiting associate Professor at Stanford
Center for Biomedical Informatics Research during
2012-2013. Prof. Dou received his bachelor degree

from Tsinghua University, China in 1996 and his Ph.D. degree from Yale
University in 2004. His research areas include artificial intelligence, data
mining, data integration, NLP, and health informatics. Dejing Dou has
published more than 100 research papers.

Zhishan Guo (Senior Member, IEEE) is an As-
sistant Professor with the Department of Computer
and Electrical Engineering, University of Central
Florida, Orlando, FL, USA. He received the B.Eng.
degree (with honor) in computer science and tech-
nology from Tsinghua University, Beijing, China,
in 2009, the M.Phil. degree in mechanical and au-
tomation engineering from The Chinese University
of Hong Kong, Hong Kong, in 2011, and the Ph.D.
degree in computer science from the University of
North Carolina at Chapel Hill, Chapel Hill, NC,

USA, in 2016. His current research interests include real-time and cyber-
physical systems, neural networks, and computational intelligence. He has
received best paper awards from flagship conferences such as RTSS and
EMSOFT.

	Introduction
	Background
	Real-Time IoT Systems
	Machine Learning
	Statistical Learning Algorithms
	Neural Network-Based (Deep) Learning Algorithms
	Other Miscellaneous and Optimization Algorithms

	ML in Real-time IoT Systems
	ML for Scheduling Analysis in Real-Time IoT Systems
	ML-Based Schedulability Analysis
	ML-Based WCET Estimations
	ML-based System Behavior Prediction

	Adaptation of ML in Real-Time IoT Systems
	Model Compression for Real-Time IoT Systems.
	Real-Time Pipeline

	Privacy and Security in Real-Time IoT Systems

	Applicability of Machine Learning in Real-Time IoT Systems
	Discussion and Future Research
	Towards Machine Learning for Real-Time Systems
	Towards Real-Time and Schedulable Machine learning

	Conclusion
	References
	Biographies
	Jiang Bian
	Abdullah Al Arafat
	Haoyi Xiong
	Jing Li
	Li Li
	Hongyang Chen
	Jun Wang
	Dejing Dou
	Zhishan Guo

