
Physics-Aware Mixed-Criticality Systems Design via End-to-End Verification of CPS

Kurt Wilson, Abdullah Al Arafat, John Baugh, Ruozhou Yu, Zhishan Guo
North Carolina State University

{kwilso24, aalaraf, jwb, ryu5, zguo32}@ncsu.edu

Abstract—Autonomous systems are heavily used in many
safety-critical systems, such as industrial automation, au-
tonomous cars, Industrial Internet of Things (I-IoT), etc.
Verification of the functional and temporal correctness of
such systems is necessary before deployment to ensure their
safety. However, due to the presence of physical systems in
the continuous-time domain and computational models in the
discrete-time domain, end-to-end verification of these systems is
highly challenging. Existing formal methods focus on verifying
physical models assuming static or simplified computation
models. In contrast, existing real-time systems focus on sat-
isfying strict timing bounds but do not care how those bounds
are obtained and how they relate to physical safety. Our
approach bridges these two domains, and constitutes an end-to-
end verification framework for arbitrary physical models and
computational models incorporated within a cyber-physical
automated system. By allowing the interaction between the
computational and physical models, our verification framework
enables a fine-grained scheme that verifies against the local
environment instead of verifying against global worst-case
assumptions. Moreover, to support locally varying worst-case
scenarios, a mixed-criticality system is proposed where the
system supports several critical models and switches among the
modes based on environmental uncertainty. Finally, a proof-
of-concept evaluation of the proposed framework is reported.

1. Introduction

Cyber-physical systems such as industrial control sys-
tems, autonomous vehicles, I-IoT, etc., autonomously and
seamlessly interact with the physical world, making them
safety-critical in the sense that failure can lead to catas-
trophic effects on human lives and physical well-being.
Hence, verifying the temporal and functional correctness of
these systems before deployment is imperative.

Traditional safety analysis of such systems typically
decouples the timing requirements from the functional cor-
rectness in the physical world as two independent steps [1]:
(i) verify physical correctness via formal methods and derive
all safe timing bounds from control theory, and then (ii)
design and verify the computing systems for the timing
bounds independently. While such approaches are common
practice for verifying these systems, they tend to be overly
pessimistic as all timing bounds are derived for worst-case
scenarios, including the system’s operating environment.

must respond
within 10 ms

must respond
within 8 ms

Figure 1. An autonomous vehicle in two positions on a racetrack. For
some states, a tighter latency bound is required for safety. While driving
on a straight section of track, the controller can operate safely with a 10 ms
latency, but while on a curved section, must respond within 8 ms. Standard
verification methods would report that a 10 ms latency is required for safe
operation on this track, but using mixed-criticality scheduling, it may be
possible to use a dual-critical system where the car would run in straight
segments of the track in one system mode and the curved segments in
another system mode.

Moreover, when verifying a system and environment
with a single timing bound that applies in all cases, the
situation in Fig. 1 may result in one finding that the envi-
ronment cannot be safely navigated.
Contribution. We propose an end-to-end verification frame-
work that collaboratively verifies computational and phys-
ical models. By allowing bi-directional communication of
maximum observable latency from the computational model
and maximum allowable latency by the physical model
for safe operation, we propose a fine-grained verification
framework that only verifies locally (while remaining safe
eventually1) instead of the worst-case global scenario.

Furthermore, we propose a mixed-criticality system2 that
supports several critical modes and switches among the
modes based on environmental variations to support locally
varying worst-case allowable latencies. By considering the
possibility of a mode switch during verification, the pro-
posed method could decide that the environment is actually
feasible, making it a worthwhile improvement.
Related Work. Our proposed framework can be compared
with the Simplex architecture [4], [5]. In the Simplex archi-
tecture, an unverified High-Performance Controller (HPC) is
accompanied by a safe High-Assurance Controller (HAC)

1. This is based on our hypothesis that locally safe operations eventually
keep the system safe globally–formal proofs are left for future work.

2. Please see Burns and Davis [2] for a detailed introduction and up-to-
date survey of the research related to mixed-criticality systems, and Arafat
et al. [3] for recent work on generalized mixed-criticality systems.



with a (verified) safe Monitoring and Decision Logic
(MDL). When the HPC’s control action could lead the
system to an unrecoverable state where the HPC can no
longer guarantee safety, the MDL automatically switches to
the HAC to ensure safety. The MDL is usually achieved by
runtime reachability analysis or statistical simulations.

2. Proposed Verification Framework

2.1. System Model

Our system model M := {MW ,MS ,MC ,MP } is
the composition of workload model MW , scheduler model
MS , controller model MC , and physical model MP . The
relationship among these models is depicted in Fig. 2. To
ensure safety, we show that a model M in environment E
satisfies (⊨) a property P , or M∥E ⊨ P , where M and E
are composed in parallel, and P can be viewed as a system-
level property. For instance, M may be an F1Tenth racing
car, E a representation of obstacles and other geometric
features such as racing track, which may be time-varying,
and P a safety property, e.g., collision avoidance.
Workload Model (MW ) consists of a set of n tasks
Γ = {τ1, τ2, . . . , τn}. Depending on the inter- and intra-
dependencies of the tasks, the task set Γ can be independent,
dependent as processing chains or directed acyclic graphs,
etc. In addition, depending on the release pattern of the
tasks, the tasks could be periodic, aperiodic, or sporadic. In
order for the scheduler model MS to determine an accurate
worst-case latency, the tasks in Γ should include all the tasks
in the system that could affect the timings of the controller
execution, even if they do not directly contribute to the
computed values of the controller.
Scheduler Model (MS) models the behavior of the sched-
uler used in the system to schedule the workloads in the
underlying hardware platform. Scheduling policies could
be directly implemented in operating systems (e.g., RTOS,
RTLinux) or using middleware such as ROS 2, and AU-
TOSAR [6] for better composability and modularity in com-
plex autonomous systems. Scheduler model MS precisely
models the scheduling policies interacting with the workload
model to safely compute the worst-case latencies for the
workloads used in the system. It is essential to validate
the functionality of the model before use to ensure that all
necessary properties of the scheduler are correctly modeled
in the scheduler model.
Controller model (MC) defines an algorithm that reads
state values from the Environment model (E), and outputs
values that affect the Physics model (MP ), with the goal of
meeting the property P . The controller model experiences
some latency between reading the environment state and
writing changes to the physics model due to the execution
time of the controller code, and latency caused by other tasks
in the system. The controller model does not simulate the
scheduler, nor does it determine the latency value—instead,
the latency is computed separately in MS , where some of
the tasks in Γ represent the controller model. The user must
provide a worst-case execution time for the controller.

Physics Model (MP ) is user-provided, and its functionality
is validated independently. The physics model describes how
the physical system moves through and interacts with the
environment over time. The physics model may be defined
by differential equations that describe the motion of objects.
The physics model should expose parameters that can be
controlled from the controller model MC .
Environment Model (E) defines the scenario within which
the physics model operates. The environment model exposes
state variables that can be read by the controller model as
input. The environment model may also abstract some of
the sensing processes that would happen on a real physical
system, such as localization or object detection, into simpler
tasks. We assume the environment model is known a priori.

2.2. End-to-End Verification
We first define the latency for tasks and the system

modes for mixed-criticality scheduling.

Definition 1. (Task Latency) The task latency is the amount
of time between a task being released (becomes allowed
to run) and completing execution (producing a result and
yielding to the scheduler).

Tasks can be arranged in a chain layout, where the first
task is triggered by some external event (a timer or some
signal) and releases some other task. The released task may
cause other tasks to release, until some final task completes,
ending the chain. This structure appears in systems as a
way to read/receive sensor data, perform some processing,
and perform some actuation in the physical system. Multiple
chains can be in a system to perform different tasks.

Definition 2. (Worst-Case Chain Latency) The chain latency
is the amount of time between the release of the first task
in a chain and the completion of the last task in the chain.
This is also referred to as end-to-end latency. The worst-
case latency is the maximum latency to process a sensor
input to actuation output in any system state.

Definition 3. (System Modes) The scheduler must expose
configuration parameters that change the achievable dead-
line for a specific set of tasks or task chain. A set of
parameters is referred to as a mode. For a dual-critical
system, the scheduler may have the option only to run the
driving task chain and prevent all other tasks from running.
We could refer to this as a high mode. We can refer to the
scheduler’s normal behavior as a low mode.

Using formal methods, we can determine the control
system’s worst-case latency and the proper system mode
for acceptable latency to operate safely. The design and
verification steps are as follows:

• Step 1: Derive the models that represent the system
components. The timing model (i.e., workload and
scheduling model) will represent the scheduler for
the system, and determine its timing properties, in-
cluding the worst-case response times of the control
chain. The environment model describes where the



Physics Model

End-to-End

Latencies

Worst-Case

Feasible Latency

Sensor
Task

Monitor
Task

Sensor
Task

Controller
Task

System Behavior Model

Scheduler Model

Run
Timers

Run
Subscribers

Refresh
Queues

Timing Model

Controller ModelWorkload Model

Auxiliary
Task

Controller
Task

Sensor
Task

Monitor
Task

Sensor
Task

Auxiliary
Task

Auxiliary
Task

Auxiliary
Task

Environment Model

Figure 2. End-to-end verification framework. The timing model (right side) uses the system workload, scheduler policy, and outputs from the monitoring
task to determine the end-to-end latency of the system task chains, given the current scheduler mode. The controller model chains run according to the
latencies calculated by the scheduler model, and read values from the physics model and environment value. The controller tasks provide control inputs by
writing to the physics model, moving it through the environment. The monitoring task reads the physics and environment state, sending latency requirements
to the scheduling model. The scheduling model uses the latency requirements to make mode switches, which influence the determined end-to-end latencies.

physical system will operate, and should expose
values to be read as sensor inputs in the controller
model. The controller model should describe the
tasks required to manipulate the physical system to
achieve the objective. The physical system model
should be derived from system dynamics [7].

• Step 2: Divide the environment states into groups
of similar states. For each state, use the controller
model to determine the maximum allowable latency
for the controller to succeed in each state.

• Step 3: The user must determine what strategies are
available to the scheduler to reduce the controller
latencies, and define a set of modes with the goal
of reducing controller latency. The user should also
provide possible overhead times for transitions be-
tween modes, if necessary.

• Step 4 : In the controller model, create a new task
which we call the monitoring task, that uses the envi-
ronment and physics state to make mode switching
decisions. The monitoring task should use a slid-
ing window method to compute actions and states
that the physics model will reach in future states.
The task checks whether the frontier state enters
a group with a different maximum-required latency
- if so, it triggers a mode switch. The monitoring
task selects the scheduler mode with the highest
controller latency that still satisfies the environment
requirements. The sliding window ensures that by
the time the physical system enters a state with
a lower latency requirement, the mode switch has
occurred in time.

• Step 5: Verify all of the models together for safety.
During verification, the physics and environment
models are simulated over time, while the sched-
uler model selects tasks to run from the workload,
including the controller and monitoring tasks. The
controller causes the physics model to move through
the environment, and the monitoring task influences
the scheduler behavior through mode switches. If the

verifier determines that the physical system never
enters a failure state, then the controller, scheduler,
and workload is safe to use.

3. Discussion
This section discusses the design choices for the pro-

posed framework and the trade-offs between them.
Offline vs. Online Verification. Depending on the avail-
ability of the environment model, the latency requirement of
different environment states can be determined using online
or offline methods. If the full environment is known ahead
of time, possible environment states can be sampled and
tested for the required response time for safe behavior. For
example, suppose the environment is a race track, and the
physical system is an autonomous vehicle. In that case, the
track can be split into zones, and the required response time
of each zone can be evaluated offline. If the environment is
unknown, then the required response time can be determined
by the system at runtime. For example, a vehicle can deter-
mine a required response time using speed measurements
and sensor data of nearby obstacles. For both online and
offline response time decisions, some work has to be done
online to either look up or calculate a response time.
Lookahead Window for Environment Monitoring. To
determine a required response time for safe behavior, the
system may perform some ‘look-ahead’ to determine how
and where the system will be in the future, depending on
the current system latency. The system will use a sliding
window, where the system is simulated up to a time horizon.
At each time step, the first control input from the sliding
window is used in the physical system, the sliding window
is incremented forwards in time, and the control input for
the new frontier is calculated. If a crash is detected at the
frontier, then a mode switch is initiated.

For an offline method, the required response times for
environment states is pre-computed. If the frontier state in
the sliding window enters a state with a different response
time requirement, a mode switch is initiated.



The length of the lookahead window must be determined
using the time required to make a mode switch and the cur-
rent system response time. The mode switch must complete
before the physical system enters the environment state with
the new latency requirement.
Latency Controlling Mechanisms. The response time of
the control system is determined by multiple factors, in-
cluding the scheduler policy, control task priorities and the
presence of other tasks in the system. A mode switch may
reduce the system response time by changing priorities,
dropping other tasks, or increasing the clock speeds of the
control hardware.

Jobs may have priorities that are used to determine, out
of all pending jobs, which are run first by the scheduler.
If the priorities are dynamically determined from deadlines,
then the deadlines of the controller chain could be reduced
to increase their relative priority. It may also be possible to
temporarily prevent jobs of some tasks from running at all,
which may reduce the latency of the remaining tasks.

Depending on the scheduler policy, multiple instances
of a chain may be running at the same time, allowing a
prior instance of a chain to block execution of a subsequent
instance. If the scheduler supports a limit for maximum
concurrent chain instances, lowering the limit during a mode
switch may reduce the latency of the controller chain.

Processors may run at a speed lower than their maximum
possible speed to reduce power consumption and thermal
load. During periods where a lower response time is re-
quired, the processor speed could be temporarily increased
to meet the latency objective.
Mode Switch Overhead. Making changes within the
scheduler during a mode switch to meet a latency require-
ment is additional overhead that must be considered when
determining the need for a mode switch.

4. Proof of Concept Evaluation
UPPAAL [8] is a model-checking tool that can symbol-

ically verify properties of timed autonoma and statistically
check properties of hybrid systems. We use UPPAAL to
model, as a proof of concept, a single instance of offline
latency determination for a racetrack, vehicle, and controller.
We take the single-track vehicle model from [9] and spec-
ify it using the support for ordinary differential equations
provided by UPPAAL’s SMC extension [10]. The vehicle
is driven using a pure-pursit line-following controller [11].
The controller has some execution time and latency, which
contribute to its response time, and is applied to sensing and
control inputs. We find that for each track, there is a response
time such that, if the controller always responds within that
limit, the vehicle will not crash. We consider this the track’s
maximum allowable response time. If the controller is run
with a response time just above the maximum-allowable
response time, the vehicle consistently crashes at specific
points. We consider areas around these points to be areas
that require the maximum-allowable response time.

Whenever the vehicle moves too far from the centerline,
indicating that a crash is likely, we reduce the response

50 40 30 20 10 0 10 20 30

5

0

5

10

15

20

25

Figure 3. Red dots are crash locations on one map, without any mode
switches. These are locations where using a lower latency scheduling mode
may allow the vehicle to safely navigate the track.

time to the maximum-allowable response time, allowing the
car to successfully navigate the track. This demonstrates
that it is possible to use a greater response time than what
would normally be required to complete the track, and that
temporarily reducing the response time to the track’s worst-
case response requirement is sufficient.

For the map in Fig. 3, the controller chain has a period of
50 ms and an execution time of 40 ms. Due to blocking, the
controller chain has a maximum response time of 130 ms,
which causes the vehicle to crash when at high speeds. To
prevent crashing, we reduce the response time to 91 ms
whenever the vehicle strays too far from the centerline and
keep it reduced for at least 0.25 ms until the vehicle returns
to a safe distance. The vehicle does not need to spend a
long time in the reduced-latency state: on average, it only
spends 1.5 s in the reduced latency state in each 100 s run.

This proof-of-concept shows a system with high con-
troller latency that still performs safely in difficult situa-
tions by performing a scheduler mode switch to temporarily
reduce the controller latency. The problem of determining
the latency requirement for environment states remains, but
we have preliminary work that determines the maximum
allowable latency for a whole environment. We expect to
improve this to determine latency requirements for different
states within an environment, and to use these results during
the verification process.

The goal of this research is to develop a verification
approach that can automatically determine the maximum la-
tency requirement for different states within an environment,
and, using the execution times of the controller and system
tasks, scheduler, and physics models, verify that switching to
the required execution times during controller executions is
sufficient for the controller to work safely in an environment.
This would allow a more flexible software controller design.

5. Conclusions and Future Work
We propose an end-to-end verification framework that

collaboratively verifies computational and physical models.
To improve system performance, we propose the design of
a mixed-critical system where the source of criticality is the
variation of environmental states. We provide a proof-of-
concept of a system where end-to-end latencies can change
in response to the system state. We plan to implement end-
to-end verification as a case study on a similar system. In
future work, we will develop rigorous correctness proofs for
verification and mixed-criticality scheduling policies.



Acknowledgments

This work was supported in part by the National Science
Foundation under Grants CCF 2124205, CMMI 224667,
CNS 2045539.

References

[1] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf,
and Q. Zhu, “Automotive cyber–physical systems: A tutorial introduc-
tion,” IEEE Design & Test, vol. 33, no. 4, pp. 92–108, 2016.

[2] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Computing Surveys (CSUR), vol. 50, no. 6, pp. 1–37,
2017.

[3] A. Al Arafat, S. Vaidhun, L. Liu, K. Yang, and Z. Guo, “Com-
positional mixed-criticality systems with multiple executions and
resource-budgets model,” in 2023 IEEE 29th Real-Time and Embed-
ded Technology and Applications Symposium (RTAS). IEEE, 2023,
pp. 67–79.

[4] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The Simplex Ar-
chitecture for Safe Online Control System Upgrades,” in Proceed-
ings of the 1998 American Control Conference. ACC (IEEE Cat.
No.98CH36207), 1998, pp. 3504–3508 vol.6.

[5] Lui Sha, “Using Simplicity to Control Complexity,” IEEE Software,
vol. 18, no. 4, pp. 20–28, jul 2001.

[6] M. Zhang, Y. Teng, H. Kong, J. Baugh, Y. Su, J. Mi, and B. Du, “Au-
tomatic modelling and verification of Autosar architectures,” Journal
of Systems and Software, vol. 201, p. 111675, 2023.

[7] R. Banach and J. Baugh, “Formalisation, abstraction and refinement
of bond graphs,” in Graph Transformation, M. Fernández and C. M.
Poskitt, Eds., 2023, pp. 145–162.

[8] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on Uppaal,”
Formal Methods for the Design of Real-Time Systems, pp. 200–236,
2004.

[9] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Com-
posable benchmarks for motion planning on roads,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 719–726.

[10] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
“Uppaal SMC tutorial,” International Journal on Software Tools for
Technology Transfer, vol. 17, no. 4, pp. 397–415, 2015.

[11] R. C. Coulter et al., Implementation of the pure pursuit path tracking
algorithm. Carnegie Mellon University, The Robotics Institute, 1992.


