
Resilient Scheduling of Real-Time Cyber-Physical
Systems against Memory-Corruptions

Abdullah Al Arafat∗, Kurt Wilson∗, Sudharsan Vaidhun†, Bryan C. Ward‡, Zhishan Guo∗
∗North Carolina State University, †University of Central Florida, ‡Vanderbilt University

{aalaraf, kwilso24, zguo32}@ncsu.edu,vbsudharsan@gmail.com, bryan.ward@vanderbilt.edu

Abstract—Real-time cyber-physical systems (CPS) are increas-
ingly deployed in command and control applications for safety-
and mission-critical domains such as autonomous vehicles and
critical infrastructure. To enable enhanced capabilities, CPS are
becoming more complex and interconnected, yet this expanded
functionality introduces new security vulnerabilities. Addressing
these challenges, this paper presents a secure and resilient
scheduling technique for hard real-time CPS applications that
protects against common memory-corruption-based attacks. Our
approach introduces a security-oriented dimension of criticality,
enabling the system to selectively drop low-security-critical work-
loads in response to detected threats. This reduces the attack
surface and allows for the timely rescheduling of both victim
task re-executions and system recovery processes. We demon-
strate that traditional mixed-criticality scheduling approaches are
overly conservative and inadequate for accommodating dynamic
recovery requirements under this security model. To address this,
we propose a novel scheduling algorithm tailored for security-
aware CPS, along with a schedulability test using a security-
criticality demand-bound function. The proposed framework is
implemented in FreeRTOS with micro-ROS and validated using a
hardware-in-the-loop simulation of a flight control task. Extensive
schedulability experiments reveal that our model outperforms
existing approaches with required adaptation, improving ac-
ceptance ratios by over 30 percent in heavily utilized CPS
environments. This work advances secure, real-time scheduling
to enhance both the resilience and safety of critical cyber-physical
applications.

Index Terms—real-time cyber-physical system, mixed-
criticality systems, resilient scheduling, secure recovery

I. INTRODUCTION

Real-time and embedded systems are foundational to the
control and coordination of complex cyber-physical systems
(CPS) across various sectors, including autonomous vehicles,
power grids, and the Industrial Internet of Things (IIoT). In
applications such as these, onboard computational systems
enable efficiency, autonomy, and responsiveness. However, the
increasing complexity and interconnectedness of these embed-
ded devices also broaden the attack surface, introducing new
security vulnerabilities that could compromise system integrity
and safety. Unlike general-purpose systems, embedded CPS
often lack robust cybersecurity defenses, leaving them more
susceptible to exploitation. For instance, the Mirai botnet [7],
illustrated how basic vulnerabilities, such as default passwords
in IoT devices, can be exploited at scale, turning thousands
of embedded systems into attack vectors. Given the mission-
critical nature of CPS, it is essential for these systems to not
only detect and mitigate threats but also maintain stringent
real-time performance and resilience in response to attacks.

Traditional cybersecurity techniques, such as address-space
layout randomization (ASLR), are ubiquitous in general-
purpose computing and enabled by default in operating sys-
tems like Windows, macOS, and Linux. However, real-time
and embedded systems often avoid such randomization-based
defenses due to the high unpredictability and performance
overhead they can introduce, which conflicts with the strict
timing constraints required by CPS [15], [20].

The most common class of vulnerabilities in CPS is
memory-corruption ones, which attackers can exploit to over-
write or access unintended memory regions. For example,
unchecked array access may read or write beyond their
allocated memory, potentially altering executable code and
disrupting the intended program flow. According to reports
from Microsoft and Google, memory-corruption vulnerabili-
ties account for roughly 70% of the vulnerabilities in their
codebases [34], [41]. While methods to eliminate these vulner-
abilities exist, such as Softbound [33], which incurs over 100%
overhead in memory usage and CPU cycles, they are often too
costly for real-time CPS applications. Alternatively, rewriting
codebases in memory-safe languages like Rust, though effec-
tive, remains impractical at scale. As a result, most runtime
defenses against memory-corruption-based attacks in CPS aim
to detect exploitation attempts and prevent further compromise
by terminating the affected process. For example, control-
flow integrity (CFI) [4], [47] performs checks at control-
flow transitions to ensure valid branch targets and crashes
the process upon invalid control flow. Importantly, runtime
defenses are integral to the protected task, that is, they are
executed within the protected process, not in a separate process
as in monitoring-based security approaches [22], [23], [24],
[25]. Runtime defenses are, therefore, proactive, designed to
prevent exploitation by stopping attacks before they escalate,
whereas monitoring-based approaches are reactive, detecting
anomalies and exploitation evidence post-occurrence. We note
that runtime defenses are designed to prevent exploitation,
while monitoring-based approaches detect anomalies and evi-
dence of such exploitation.

However, in real-time systems that often control critical
physical processes, crashing a compromised process can jeop-
ardize the integrity and stability of the entire system. To safely
integrate such defensive mechanisms, it is essential to provide
recovery capabilities that can respond to detected malicious
events without disrupting real-time constraints. Specifically,
the system must be able to restart a process, return it to a



known safe state, and re-execute it promptly to maintain safe
and continuous control. Restarting a real-time process (i.e.,
job) introduces additional computational demands that can
significantly impact its ability to complete within its deadline.
Without careful management, these demands may further
jeopardize the temporal integrity of other tasks, potentially
cascading into broader system instability. Therefore, effective
mitigation strategies are required to ensure that recovery
operations uphold both the security and timing requirements
essential to the reliable operation of cyber-physical systems.

These observations motivate the need for new task models
and scheduling algorithms to enable resilience to memory-
based attacks, i.e., the ability to maintain some safe level
of operation while recovering from an attack. While there
may be naı̈ve means of supporting such behavior in existing
scheduling and analysis frameworks, maximizing the plat-
form’s utilization while enabling such resilience requires new
models, algorithms, and analysis. Note that we do not specify
the details of restoring the system to a known good state after
an attack. Our focus is ensuring, given the timing properties
of the system tasks and restoration task, that the recovery task
can be completed without causing deadline misses in other
critical tasks.
Mixed Criticality. This problem shares several important sim-
ilarities with mixed-criticality (MC) scheduling, particularly
in its capacity to operate in a degraded mode of execution.
However, traditional MC scheduling models have primarily
been developed to address a single type of aberrant behavior—
temporal overruns—rather than security incidents. Notably,
Burns has argued for the generalization of MC systems into
multi-mode systems [14]. This work exemplifies this argu-
ment by demonstrating a multi-mode system in which mode
switches are triggered by security events rather than timing
overruns.

There are several important similarities and differences be-
tween the standard Vestal-model [44] for MC scheduling and
the need of a resilient real-time recovery model. For example,
when a security event is detected, it is useful to shed less-
critical workloads to ensure the continued correct operation
of high-critical workloads. Shedding workloads is especially
useful for security as it can also reduce the attack surface of
the system. There are, however, several important differences.
First, when a defense prevents an attack, it crashes the process,
requiring re-execution of the job and additional processing
time. Another key difference with security criticality is that
we assume that an attacker can target at most one task, not
all tasks simultaneously. Mainly, memory corruption attacks
target vulnerabilities in code, and because different tasks have
different codes, they are not likely to be vulnerable to the same
exploit payloads [40]. Tasks handling IO are ideal targets for
memory attacks since mistakes in input processing can provide
entry points to the system, making them attractive targets for
attackers. Finding vulnerabilities is often difficult1 and con-
structing malicious payloads is challenging, especially when

1Many companies have bug bounty programs that pay significant rewards
for reporting vulnerabilities.

modern defenses are employed. It is, therefore, unreasonable
to assume that an attacker targets all processes in a system
with unique exploits simultaneously.

Thus, it is too pessimistic to adapt existing results in MC
analysis. In addition, in an MC environment, the system often
returns to normal mode when a transient overload condition
subsides. In contrast, returning to a normal mode of execution
after detection of a security threat may require additional
recovery processing for computations such as (i) adding the
malicious input to a blocklist to ensure the re-executed task
will not be attacked [30], (ii) forensic analysis, (iii) human-
operator communication, and/or (iv) other actions to harden
the security posture of the system, such as substituting binaries
with stronger-defended ones, etc. Such additional computation
time must also be modeled and analyzed. Notably, shedding
less critical workload, with the proper analysis, frees computa-
tion time to enable such recovery processing without affecting
the utilization of the normal mode. Moreover, existing non-MC
and MC scheduling schemes cannot guarantee the immediate
execution of the recovery process after the detection of an
attack to prevent replay attacks on the victim task.
Contributions. Based on these observations, (i) we propose
SR3, a secure and resilient real-time recovery task model
(Sec. II) that can recover from a memory-corruption-based
attack at runtime while maintaining the correctness of high-
security-critical tasks. Specifically, we propose a novel ap-
proach to model the recovery process by designing a sporadic
server with guaranteed execution of the recovery process to
sanitize the victim’s task before re-executing; (ii) we develop
a scheduling algorithm for the presented task model using the
earliest deadline first (EDF) with virtual deadlines for security-
critical tasks and corresponding demand-bound-function-based
schedulability test (Sec. III); (iii) we present a system imple-
mentation of SR3 in FreeRTOS running on micro-ROS and
system implementation overhead analysis using a flight control
task in hardware-in-the-loop simulation (Sec. V); and (iv)
we conduct schedulability evaluations of SR3 using synthetic
workloads (Sec. IV). Our extensive evaluation demonstrates
the effectiveness of SR3 over adapted existing scheduling
schemes and the feasibility of system implementation.

II. MODEL AND PROBLEM

A. Threat Model

We assume a threat model consistent with other prior works
on runtime defenses [18], [47], [56]. Specifically, we assume a
write-what-where vulnerability2 that an attacker can leverage
to corrupt code pointers 3 to hijack control flow to attacker-
specified location(s). Significant research has shown that even
such simple and common vulnerabilities can be exploited
using return-oriented programming (ROP) [37] or other attack
techniques (e.g., [49]) to completely hijack control flow and

2An attacker’s ability to write any value to any memory location, e.g.,
leveraging a buffer overflow.

3A code pointer is any address stored in a data section that points to
executable code. Return addresses on the stack are frequent attacker targets.



implement Turing-complete attacker-controlled logic. This is
a very common and powerful threat model.

We assume the system is instrumented with an existing real-
time runtime defense such as control-flow integrity (CFI) [18],
[47], [56], [36], or data-flow integrity [12]. Notably, all of
these defense techniques detect an attack on a task at or before
the completion of its execution budget and prevent further
exploitation of the task by crashing it.

Attacks on the scheduler or RTOS itself are outside the
scope of our threat model. However, the scheduler and RTOS
can be made trustworthy if using a verified RTOS (e.g.,
seL4 [27]) or by using a trusted execution environment (e.g.,
ARM TrustZone [48]).

B. System Model

Let Γ′ = {τ1, τ2, ..., τn} be a set of independent n sporadic
and constrained-deadline tasks scheduled on a uniprocessor.
Each task τi can be represented by a tuple (Ci, Ti, Di, ςi),
where Ci is the worst-case execution time (WCET)4, Ti is
the minimal inter-arrival separation, and Di is the relative
deadline (i.e., Di ≤ Ti) of the task instances (i.e., jobs). We
assume each task can potentially release an infinite sequence
of jobs. Let ςi ∈ {0, 1} denote whether task τi is of low
or high security criticality. We use Γ

Cς
= {τi|ςi = 0} and

Γς = {τi|ςi = 1} to denote the set of low-security-criticality
(LO-security) tasks and high-security-criticality (HI-security)
tasks, respectively. We model LO- and HI-security tasks based
on the observation that some tasks are not essential to maintain
the safe or secure operation of the system, especially when
the system may be under attack. This is depicted in Table I.
For example, in an automotive system, infotainment services
are not mission-essential functions and should neither interfere
with high security nor temporal criticality tasks. Some tasks
are also high criticality with respect to both security and tem-
poral criticality, as they support mission-critical functionality.
However, there are some tasks that could be critical to the
security of the system but be less critical to the temporal
correctness of the system. For example, key management
for encrypted communication may be critical to the security
of the system, even if their timing is not mission-critical.
Alternatively, some sensor readings may support optional or
non-mission-critical functionalities, which could be disabled in
the presence of a security threat. However, in order to maintain
a consistent state, their processing is critical to ‘timing’.

Note that LO-security tasks may themselves contain vul-
nerabilities. When the system is under attack, minimizing the
attack surface is a valuable defense in and of itself. Given this
motivation and model, we define the following terms:

Definition 1 (Victim Task and Targeted Task). Any task τv ∈
Γ′ is a victim task when it is attacked during runtime. We
further denote a HI-security victim task τv as a Targeted Task,
τt ∈ Γς , with an execution budget of Ct.

Control-flow-hijacking attacks exploit one or more vul-
nerabilities within a single process to construct a malicious

4Contrary to traditional MC, Ci does not change in different system modes

TABLE I: Tasks of differing temporal and security criticalities.

Temporal Criticality
High Low

High Safety-critical Encryption key management
Security Control Processing software

Criticality Low Processing non-mission- Infotainmentcritical sensor inputs

payload. Finding vulnerabilities and constructing malicious
payloads is challenging, especially in the presence of modern
defenses, and is application-specific. We, therefore, assume
that an attack may target, at most, a single task at a particular
time instant.

Definition 2 (System Modes). The system will begin its
execution under normal mode, during which no attack on
a security task is detected. Once a victim task is identified
during runtime, the system will immediately switch into re-
covery mode. Proper actions (see below) will be taken during
recovery mode to prevent the system from further exploitation.

When transitioning to the recovery mode, additional actions
may be taken to facilitate recovery, for example, additional
monitoring or validation of the system, forensic analysis, com-
munication with human operators, etc. We model this addi-
tional workload as a recovery workload. To accommodate the
recovery workload, we propose to use a ‘sporadic server’ [39]
in the recovery mode. Modeling the resource reservation for
recovery workload via a sporadic server instead of modeling
by a regular task has multiple benefits. First, the behavior of
the recovery workload often depends on the specific recovery
scenario, which could potentially be only one instance task
(i.e., job) or a periodic task; thereby, modeling as a sporadic
server allows for accommodating mixed types of recovery
workloads. Second, it ensures that the recovery workload
receives a guaranteed bandwidth and is not deferred as a best-
effort task or simply scheduled as a background task, thereby
allowing for quick recovery actions. This sporadic server for
the recovery workload—denoted as ‘Recovery Server’—is in
addition to the regular HI- and LO-security tasks defined below:

Definition 3 (Recovery Server). The recovery server τR =
{CR, TR} is a sporadic server that is activated/released
upon detection of an attack during runtime, where CR is its
execution budget and TR is the period. The initial resource
replenishment time of the recovery server is equal to the system
mode switch instant.

The design choices of server parameters are discussed later
in this section. Note that we use a standard simple sporadic
server [39] as the recovery server. Therefore, the resource
consumption and replenishment rules for the simple sporadic
server [39] directly apply to the recovery server. In addition,
as the sporadic server behaves as a regular sporadic task, the
schedulability analysis of the recovery server would be carried
on as a sporadic task.

Design of Recovery Server (to prevent Denial-of-Service
(DoS) or Replay attacks). Since it is important to put the
malicious inputs into a ‘blocklist’ [30] upon detection of an



TABLE II: Workload considered in Example 1.

Task ID Ci Ti ςi
τ1 1 3 0
τ2 2 9 1
τ3 5 25 1
τR 0.4 4 −

attack to prevent simply replaying the same attack on the
tasks to perform DoS by an adversary, it is necessary to make
sure that the recovery server gets the highest priority at the
beginning of the recovery mode so that the malicious input can
be block-listed by the recovery process. How can one ensure
that the recovery process starts being executed by the recovery
server at the beginning of recovery mode? This depends on
the design of the scheduling algorithm for the system’s overall
workload. We will design the recovery server in section III
after discussing the proposed scheduling algorithm, which is
one of the key contributions of this paper.

The whole SR3 system workload contains the HI- and LO-
security tasks, as well as the recovery server, i.e., Γ = Γ′∪τR.

Correctness Criteria. Given the SR3 system, which contains
a set of HI- and LO-security tasks and the recovery server, a
correct scheduler must

1) guarantee that all HI-and LO-security tasks receive enough
execution budget and meet their deadlines during normal
mode;

2) ensure that all HI-security tasks (without failure, i.e.,
except the Targeted task) continue to receive normal ex-
ecution budget and meet their deadlines during recovery
mode;

3) ensure that if the victim task is a Targeted task (the failing
HI-security5 task being attacked), then the victim task will
receive another full re-execution budget (of its original
WCET, Ci) beyond the mode switch point and meets its
original deadline;

4) provide enough budget to the recovery server following
the resource consumption and replenishment rules of
sporadic server [39] during recovery mode;

Our objective is to identify a correct online scheduling
mechanism and derive an offline schedulability test. Note that
once there is a detected attack (and thus a mode switch), guar-
antees to service of LO-security tasks are no longer required,
and this workload is dropped to minimize the attack surface.
The targeted task must be re-executed before its original
deadline in order to maintain continuous safe operations. We
assume the malicious input can be placed in a blocklist using
a proper recovery process and that a known-safe or sanitized
input is used for the re-executed job. This assumption is
consistent with prior work [30].

Unfortunately, the standard uniprocessor scheduling algo-
rithms (e.g., EDF) perform poorly on the task set. Besides,
it is also non-trivial to prevent replay attacks in non-mixed-

5When the victim task is a LO-security one, a mode switch is triggered
immediately, while no re-execution budget will be allocated, as no guarantees
are provided to LO-security tasks in recovery mode.

criticality systems as the execution of the recovery task before
re-executing the victim task cannot be simply ensured with
EDF without any additional constraint.

Example 1. Consider a task set Γ = {τ1, τ2, τ3, τR} with
parameters presented in Table II (τR is carefully chosen for dy-
namic priority algorithm). For ease of discussion, we consider
an implicit deadline workload here. This regular sporadic task
set is schedulable on a uniprocessor system under the EDF
scheduler as the utilization (

∑
∀i

Ci

Ti
) of the task set is 0.855

(including the utilization of recovery server, τR) which passes
the optimal schedulability test (i.e.,

∑
∀i

Ci

Ti
≤ 1) for implicit

deadline workloads on a uniprocessor.
Now let us map the SR3 system workload to a sporadic

task model for EDF scheduling by doubling the execution
of HI-security tasks, (C ′

2 = 4, C ′
3 = 10) and keep the

recovery server always active. After mapping the task set to
a sporadic task model for EDF scheduling, the utilization of
the mapped task set becomes 1.277. Therefore, the mapped
task set with security awareness is not schedulable by EDF.
We will later see that the task set is schedulable under our
proposed scheduling algorithm.

As only the targeted task is re-executed instead of all HI-
security tasks, intuitively, an optimistic case would be doubling
only the execution of the targeted task instead of all HI-tasks
while mapping to the sporadic task model from SR3 system
workload. However, as any HI-security task can be the targeted
task, one cannot simply double the execution budget of a task
to cover the re-execution of any HI-security task. One might
(pessimistically) think of designing a server (e.g., sporadic
server) with an execution budget as the maximum WCET of
any HI-task and server period as the minimum period of any
HI-task. It is not entirely guaranteed that the server can re-
execute a targeted task within the original deadline if the
attack is detected right at the deadline moment of the job. This
is why we have mapped the workloads for EDF as doubling
the execution of all HI-tasks.

III. SCHEDULING ALGORITHM

In this section, we first present our proposed scheduling
algorithm (denoted as sEDF-VD) for the SR3 system work-
load. As demonstrated by example 1, directly employing an
EDF scheduler may lead to a too narrow scheduling window
between the attack detection instant to its deadline instant
for a HI-security task to re-execute upon an attack and thus
lead to a deadline miss. Therefore, we proposed to adopt the
concept of virtual deadlines, such that the HI-security tasks
receive proper ‘promotion’ under the normal mode. We then
present the design of the recovery server for the proposed
sEDF-VD algorithm so that the recovery server receives a
guaranteed execution budget at the beginning of the recovery
mode. Finally, we present the schedulability test of sEDF-VD
based on demand-bound functions (DBF) analysis.

A. Algorithm sEDF-VD

Let us start with a general overview of our proposed
algorithm. At any instant in normal mode, we aim to promote



the execution of jobs of HI-security tasks over LO-security
tasks, maintaining the deadline constraints of all tasks. To do
so, we compute a virtual deadline Dv

i = x ·Di for each HI-
security task such that the virtual deadline is less than or equal
to the original deadline of the tasks (i.e., no task exceeds the
original deadline), where x ∈ (0, 1] is a deadline shrinkage
parameter. After computing a suitable virtual deadline for
each HI-security task, HI-security tasks are scheduled using
their virtual deadline and LO-security tasks with their original
deadline following the EDF algorithm. The window between
the virtual and actual deadlines for each HI-security job is
‘reserved’ for the HI-security task’s potential re-execution
upon attack/mode switch. Further, in recovery mode, all LO-
security tasks are dropped immediately at system mode-switch
instant. Then, in recovery mode, all HI-security tasks and the
recovery server are scheduled following the EDF algorithm
using the original deadlines.

B. Design of Recovery Server

We will now design the recovery server scheduled using
sEDF-VD so that it can receive the highest priority at the
beginning of the recovery mode. The following theorem states
a sufficient condition for the server parameter:

Theorem 1. The recovery server τR = {CR, TR} with system
workload Γ′ scheduled using sEDF-VD is guaranteed to
receive the highest priority at the beginning of recovery mode
if the period of the server is TR = min{Di −Dv

i }, ∀τi ∈ Γς .

Proof. Since the workload would be scheduled by sEDF-VD,
to receive the highest priority at the start of recovery mode,
the server deadline has to be the earliest one among all active
jobs at the mode-switch instance.

Following the system model, a job (let denoted as J) of
a targeted task is the executing job during the mode-switch.
Assuming all jobs met their respective (virtual) deadline in the
normal mode (which is a necessary condition for schedulable
workload), there are two cases for a mode-switch to recovery
mode such as the mode-switch instant is (i) the absolute virtual
deadline instant of the job J , and (ii) a time instant before the
absolute virtual deadline of J .
Case (i): Since J is the executing job among all active
jobs, J has the earliest virtual deadline among all active
jobs. After the mode switch, all active jobs’ deadlines will
be updated to actual (absolute) deadlines from the virtual
deadlines. Therefore, for all active jobs, the deadline would
be at least Di − Dv

i units ahead of the mode-switch instant.
Hence, the server with min{Di −Dv

i } would be the earliest
deadline (i.e., highest priority) job.
Case (ii): Since the mode-switch instant is before the virtual
deadline of J and the deadline of all active jobs are updated
to their respective absolute deadlines from virtual deadline
instances (where all virtual deadlines of active jobs are after
the mode-switch instant), the server with min{Di−Dv

i } would
be the earliest deadline (i.e., highest priority) job.

Note that if the deadline shrinkage factor x = 1, then Di =
Dv

i implying TR = 0, i.e., server would be activated. However,

x = 1 can only be possible if the system is not under attack,
which is not the case for the schedulability test developed
in the following section. Note that the schedulability test is
considered the worst-case scenario, where the targeted task
must be reexecute in the recovery mode. Therefore, Di −Dv

i

for any τi ∈ Γς cannot be 0.

C. Schedulability Test

We present a schedulability test of the sEDF-VD algorithm
for the SR3 system workload via the workloads’ demand-
bound functions (DBF) analysis across system modes. The
DBFs of tasks (to be executed in the recovery mode) are
inherently related between normal and recovery modes as the
tasks (specifically HI-security tasks) would execute in both
system modes. Therefore, we can shift demand from one mode
to another by tuning the virtual deadline, Dv

i = x ·Di of the
HI-security tasks.

Here, we derive DBF for HI-security tasks, LO-security
tasks, and the recovery server. We then use those functions
to determine the schedulability of sEDF-VD for the task set.
Let us first define the DBF for a sporadic task [9] as follows:

Demand bound function (DBF), dbf(τi, ℓ), gives an upper
bound of maximum possible execution of all jobs of a task
τi = (Ti, Ci, Di) that have both their arrival times and
deadlines in the scheduling window, ℓ. The demand bound
function is defined as follows [9],

dbf(τi, ℓ) = max

{⌊
ℓ−Di

Ti

⌋
+ 1, 0

}
· Ci (1)

Baruah et al. [9] developed a necessary and sufficient condition
for EDF scheduling of a non-mixed-critical sporadic task set
using DBFs, which we stated as follows:

Theorem 2 (From Theorem 1 in [9]). A task set τ can be
successfully scheduled by the earliest deadline first (EDF)
algorithm on a uniprocessor with a dedicated resource supply,
if and only if,∑

τi∈τ

dbf(τi, ℓ) ≤ ℓ, 0 ≤ ℓ ≤ ℓmax, (2)

where,

ℓmax = min

{
T + max

1≤i≤n
{Di},

U

1− U
· max
1≤i≤n

{Ti −Di}
}
,

where T = lcm1≤i≤n{Ti} and U =
∑n

i=1
Ci

Ti
< 1.

We will formulate the DBFs for different tasks in the SR3

workloads using the equation (1) and then the schedulability
test leveraging Theorem III-C. Ekberg and Yi [19] proposed
to analyze the DBFs for different critical tasks of the mixed-
critical system separately. We have adapted a similar technique
to derive the DBFs for different task categories of our task
set separately. Let us first define a general DBF notation to
calculate DBF for different tasks in different system modes as
dbftask id

sys mode(task, length), e.g., dbfij(τi, ℓ) implies the DBF of
ith task τi ∈ Γ in jth system mode for all time instants ℓ ≥ 0.



Now, we use the following breakdowns of DBF calculation
for the task set:

• dbfin(τi, ℓ)—the demand of a task τi ∈ Γ′ in normal
mode (denoted as n), ∀ℓ ≥ 0.

• dbftr(τt, ℓ)—the demand of the targeted task τt in recov-
ery mode (denoted as r), ∀ℓ ≥ 0.

• dbfi ̸=t
r (τi, ℓ)—the demand of a task τi ∈ Γς \ τt in

recovery mode, ∀ℓ ≥ 0.
• dbfRr (τR, ℓ)—the demand of the recovery server τR in

recovery mode, ∀ℓ ≥ 0.
Let us consider each task of the task set we will

use for the DBF-based schedulability test as a five-tuple
{Ci, D

v
i , Di, Ti, ςi}, and ςi ∈ {0, 1}. Here, Di and Dv

i are
the actual and virtual deadline of task τi, respectively, where
Di = Dv

i ≤ Ti,∀τi ∈ Γ
Cς
, and Dv

i ≤ Di ≤ Ti,∀τi ∈ Γς .
We will now derive DBF-based schedulability constraints

of the SR3 system workload considering the presence of a
targeted task (τt ∈ Γς ), i.e., the victim task is a HI-security
task instead of any arbitrary task as a victim task. We then
leverage the results to derive the schedulability constraints for
the task set that includes LO-security victim task (τv ∈ Γ

Cς
).

Let us first derive the DBF bound for the normal system mode
and then for the recovery system mode.

DBF in normal mode. When the system is in normal mode,
each task τi ∈ Γ′ works as a regular sporadic task on a
uniprocessor with a deadline Dv

i and period Ti. Similar to
a standard non-mixed-critical system, all tasks are trivially
scheduled on a uniprocessor using EDF. So, we get tight-
bound DBF for each task as follows [9],

dbfin(τi, ℓ) = max

{⌊
ℓ−Dv

i

Ti

⌋
+ 1, 0

}
·Ci; ∀τi ∈ Γ′,∀ℓ ≥ 0

(3)
Now, we will derive the DBF of the tasks in recovery

mode. The demand for LO-security tasks in recovery mode
immediately drops to zero. We will consider the tasks to be
executed in the recovery mode into three mutually exclusive
subsets of tasks, such as regular HI-security tasks (excluding
the targeted task), recovery workloads, and the targeted task, to
compute the DBFs separately. Notably, however, the resource
reservation for recovery workloads would be maintained by
the recovery server. Therefore, instead of computing DBFs
for recovery workloads, we will compute the DBF for the
recovery server. Before deriving the execution demand of tasks
in recovery mode, we will derive the scenarios when a job
of a regular HI-security task may have carry-over (defined in
the following paragraph) during the mode-switch from normal
mode to recovery mode. The targeted task and recovery server
do not have any carry-over as the targeted task will re-execute
again in recovery mode, and the recovery server receives the
first resource allocation at the mode-switch instant.

Demand of Carry-Over Jobs. A carry-over job is a job of HI-
security task that is released in normal mode and has a deadline
in recovery mode. Fig. 1 illustrates a carry-over execution
scenario. In recovery mode, we need to finish the remaining

Scheduling Window (𝒎)Mode-Switch 
instant

𝒓𝒊 𝑫𝒊𝒗 𝑫𝒊

Maximum Possible carry-over

Fig. 1: HI-security task’s carry-over during mode-switch

execution of any HI-security tasks (∈ Γς \ τt) before their
deadlines. The amount of remaining execution depends on the
task’s carry-over demand. The maximum possible carry-over
demand is the remaining execution window of each task from
the mode-switch instant to the virtual deadline (Dv

i ) of the task
(Fig. 1). We need to consider the carry-over demand during
the derivation of DBFs for ‘regular HI-security tasks’ in the
recovery mode. The properties of carry-over jobs illustrated in
Lemma III.3 in [19] also hold in our setup.

DBF of the regular HI-security tasks in recovery mode
can be computed in similar way as [19]. Instead of direct
calculation of carry-over demand, we first calculate the mini-
mum execution requirement of carry-over jobs in normal mode
before mode-switch as follows [19],

done(τi, ℓ) =


max{Ci −m+Di −Dv

i , 0};
if Di −Dv

i ≤ m ≤ Di

0; otherwise
(4)

where τi ∈ Γς \τt, τt is the targeted task and m = ℓ mod Ti.
Now, let us calculate the DBF of a task considering the

carry-over job will fully execute in the remaining scheduling
window (Di −Dv

i ) for τi ∈ Γς \ τt as follows [19],

full(τi, ℓ) = max

{⌊
ℓ− (Di −Dv

i )

Ti

⌋
+ 1, 0

}
· Ci (5)

Therefore, the maximum bound of DBF of any ‘regular
HI-security task’ τi ∈ Γς \ τt is,

dbfi ̸=t
r (τi, ℓ) = full(τi, ℓ)− done(τi, ℓ) (6)

DBF of targeted task in recovery mode include the malicious
job of the targeted task, which needs to re-execute in the
scheduling window of (Dt −Dv

t ). Therefore, the DBF of the
targeted task is as follows,

dbftr(τt, ℓ) = max

{⌊
ℓ− (Dt −Dv

t )

Tt

⌋
+ 1, 0

}
· Ct (7)

DBF of the recovery server. As mentioned in Sec. II, the
recovery server is designed using a sporadic server, which
behaves exactly the same as a sporadic task from the schedu-
lability point of view. Besides, the recovery server receives
the first resource allocation at the mode-switch instant. So,
the DBF of recovery server τR = (CR, TR) in recovery mode
can be formulated as follows,

dbfRr (τR, ℓ) = max

{⌊
ℓ

TR

⌋
, 0

}
· CR (8)



Using the equations of DBFs of different tasks and leverag-
ing Theorem III-C, we get the following schedulability test:

Theorem 3. A SR3 system workload Γ can be successfully
scheduled by EDF with virtual deadlines on a uniprocessor if,
for any targeted task τt ∈ Γς , both of the following conditions
hold for ∀ℓ ≥ 0,

A(ℓ) :
∑
τi∈Γ′

dbfin(τi, ℓ) ≤ ℓ

B(ℓ) :
∑

τi∈Γς\τt

(
dbf i̸=t

r (τi, ℓ)
)
+dbfRr (τR, ℓ)+dbftr(τt, ℓ) ≤ ℓ

Proof. The proof follows the Theorem III-C that the total
demand in normal mode (condition A(ℓ)) is less or equal to
the available scheduling window at any instant, same as for
recovery mode (condition B(ℓ)). Condition B(ℓ) in Theorem 3
is need to verified for any τt ∈ Γς as any task in Γς could be
a targeted task.

Although in the DBF test in Theorem III-C it is sufficient
to test up to ℓmax instead of all ℓ ≥ 0 (ref. equation (2)),
Theorem 3 is developed for all ℓ ≥ 0. Due to space limitations,
we did not present such a result in the main paper.
Note. Any LO-task could also be attacked, and therefore, the
system must need to switch recovery mode to recover from
the threat once the attack is detected. However, as the LO-task
would not re-execute in the recovery mode, only the HI-tasks
can create the worst-case scenario for the schedulability test
as considered in Theorem 3.

Determination of recovery server parameters, TR, CR, and
deadline shrinkage parameter x. In Algorithm 1, we present
a binary-search algorithm for the deadline shrinkage parameter
x ∈ (0, 1]. For each x, we need to find the appropriate
server parameters TR and CR using the recovery server’s
utilization uR (ref. Line 6, 7). Then, adding the recovery
server task to the system workload (ref. Line 7), we check the
DBF-based schedulability constraints (ref. Line 8) presented
in Theorem 3. Note that in the calculation of CA and CB

in Line 8, we need to consider ∀ℓ ∈ [0, lmax] instead of
∀ℓ ≥ 0 and can be efficiently computed using quick processor
demand analysis (QPA) [55]. With an initial value of x, Line
8 returns the schedulability constrains CA and CB . Later,
Lines 9 to 11 check whether the current value of x is feasible
for the schedulability of the workload or not. Depending on
CA and CB , the algorithm either returns the current value
of x as a common shrinkage factor for all HI-security tasks
or searches for a feasible x in the half of the search space
of previous iteration. In short, Algorithm 1 returns either a
common shrinking factor x for each HI-security task if the
task set is schedulable and the recovery server’s parameters or
FAILURE if the task set is not schedulable within the precision
tolerance limit ϵ.

Example 2. We again consider the task set in Table II. To test
the schedulability of the workload scheduled by the sEDF-VD,

Algorithm 1: Procedure for finding server parameters
{CR, TR} and deadline shrinkage parameter x

Input: A SR3 system workload Γ′ = {Γς ,Γ
Cς
}, uR

(utilization of τR), and precision accuracy ϵ
1 δ ← 0.5;x← δ ; // step size for binary search

and initial shrinking factor
2 while δ ≥ ϵ do
3 δ ← δ/2 ; // updating step size
4 for each τi ∈ Γς do Dv

i ← x ·Di ;
5 TR = min{Di −Dv

i |τi ∈ Γς} ; // set the server
period for current x

6 CR = uR × TR ; // execution budget of the
server

7 Γ = Γ′ ∪ {CR, TR}
8 CA, CB = Check (Condition A(ℓ) & B(ℓ) in Thm 3) ;

// where, ℓ ∈ [0, ℓmax]
9 if CA ∧ CB then return x, {CR, TR} ;

10 else if CA ∧ ¬CB then x← x− δ ;
11 else if ¬CA ∧ CB then x← x+ δ ;
12 else return FAILURE; // no x can be found
13 end
14 return −1 ; // still possible to find a x with

smaller ϵ

we need to find whether there exists a feasible x that satisfies
both the schedulability constraints of Theorem 3. Following the
Algorithm 1, the task set is schedulable. Since the Algorithm 1
returns only a single feasible value of x, we further find out
the range of x as 0.36 < x < 0.76 (via an exhaustive search
for x ∈ (0, 1]) for Dv

i = x · Di for all HI-security tasks
which satisfy the schedulability constraints in Theorem 3 with
precision accuracy of ϵ = 0.01.

IV. SCHEDULABILITY EVALUATION

We evaluated the schedulability of sEDF-VD through syn-
thetic task sets.
Baselines. It is important to note that existing algorithms
do not guarantee the execution of recovery tasks immedi-
ately after attack detection. However, for schedulability ratio
comparison with sEDF-VD, we assumed existing algorithms
could be adapted to run the recovery process properly without
additional overheads. To compare sEDF-VD with the standard
deadline-based algorithms, we mapped the SR3 workloads
to the non-mixed-critical sporadic workload model to sched-
ule using EDF [29] and Vestal’s mixed-criticality workload
model [44] to schedule using EDF-VD [19]. We discussed the
mapping to each model and the corresponding scheduling test
used to compare as follows:

• EDF (Non-Mixed Critical Scheduling Baseline). We map
an SR3 system workload to the standard sporadic task
model via doubling the execution of each HI-security task.
Additionally, we also include the recovery server. Note
that we justify such mapping in the example 1. With
our proposed task model mapped to the sporadic task
model, we use the DBF-based schedulability test [9] to
determine the EDF schedulability for the transferred set
as the DBF test is optimal for constrained deadline tasks
scheduled by EDF on a uniprocessor.



0.0 0.2 0.4 0.6 0.8 1.0
Utilization [Normal Mode]

0.00

0.25

0.50

0.75

1.00
A

cc
ep

ta
n

ce
R

at
io

sEDF-VD (Ours)

EDF-VD [18]

EDF [8]

uR = 0.1

uR = 0.2

uR = 0.3

(a) RD = 0.9

0.0 0.2 0.4 0.6 0.8 1.0
Utilization [Normal Mode]

0.00

0.25

0.50

0.75

1.00

A
cc

ep
ta

n
ce

R
at

io

sEDF-VD (Ours)

EDF-VD [18]

EDF [8]

uR = 0.1

uR = 0.2

uR = 0.3

(b) RD = 0.8

0.0 0.2 0.4 0.6 0.8 1.0
Utilization [Normal Mode]

0.00

0.25

0.50

0.75

1.00

A
cc

ep
ta

n
ce

R
at

io

sEDF-VD (Ours)

EDF-VD [18]

EDF [8]

uR = 0.1

uR = 0.2

uR = 0.3

(c) RD = 0.7

Fig. 2: Acceptance ratio of the workloads under varying
utilization of the recovery server, subfigures correspond to the
different deadline-to-period ratios of the constrained deadline
task sets.

• EDF-VD (Mixed-Critical Scheduling Baseline). We map
our SR3 system to the MC task model by doubling the
utilization in the recovery mode for all HI-security tasks.
We also add the recovery task as a HI-criticality task to the
system where the normal execution budget of the recovery
task is set as 0. We use EDF with a virtual deadline (EDF-
VD) [8] as the scheduling algorithm. EDF-VD is a widely
accepted scheduler for Vestal’s MC task model. We apply

DBF-based schedulability test [19] to determine the
schedulability of the transferred task set.

Workload generation. The SR3 system workload generation
is controlled by the following parameters:

• n = {10}: Number of tasks in a task set
• uR = {0.1, 0.2, 0.3}: Utilization of the recovery server
• U = U

Cς
+ Uς = {x/20 | 1 ≤ x < 20}: Total utilization

of the task set in normal mode
• P = {0.5}: Probability of a task being HI-security
• RD = {0.9, 0.8, 0.7}: Deadline-to-period ratio
The task set generation begins with a target value for

normal mode utilization given by U . Using the UUniFast
algorithm [13], we derive the set of task utilizations in normal
mode. The utilization of the recovery server is given by the uR

parameter. Each task has a randomly selected period from 2 to
625, and the execution time is found by multiplying the task
utilization by its period. Deadline-to-period ratio RD is used
to generate constrained deadline workload. For each setting,
we generate 1000 task sets and present the results below.

Figure 2 reports the variation in acceptance ratios for
varying system utilizations under different recovery server
utilizations, where each subfigure demonstrates a different
deadline-to-period ratio of the constrained workload. All the
results are compared with two baseline algorithms.
Observations. When applying EDF [9], Figure 2 shows that
the acceptance ratio begins to drop as U increases beyond 0.5,
while the utilization of recovery server has noticeable effects
on the acceptance ratio. While sEDF-VD outperforms both of
the baseline algorithms, there is a noticeable performance gap
between the baselines too. EDF-VD [8] performs significantly
better than the EDF [9], which justifies the importance of our
modeling the SR3 system as a mixed-criticality system instead
of a standard of non-mixed-critical system. However, there is
around 20% performance gap between sEDF-VD and EDF
when system utilization is over 70%, mainly for pessimistic
modeling of SR3 workload to Vestal’s MC model, implying
the empirical dominance of sEDF-VD over EDF-VD.

We observe that the acceptance ratio decreases as the recov-
ery server utilization increases. We see that this degradation
is independent of the algorithms considered and is a direct
result of the added utilization in the recovery mode. Besides,
we demonstrated the effect of constrained deadlines of the
workloads on the schedulability through Figure 2a to 2c. As
expected, the more the deadlines become smaller than the
periods of the tasks, the less the number of the tasks becomes
schedulable. Such patterns are observable in Figure 2a to 2c.

V. CASE STUDY

This section presents a case study implementation of SR3

system using FreeRTOS with micro-ROS and validated using
a hardware-in-the-loop simulation of a flight control task.

A. Implementation

We implement SR3 on a testbed running micro-ROS [2] and
FreeRTOS [1]. The hardware platform is an STM32 F446RE
Nucleo-64 development board, which is based around an ARM



Cortex-M4 core. ROS 2 [3] is a popular framework for robotics
applications, and due to the resource-constrained nature of
microcontrollers, micro-ROS has been developed to make
core ROS 2 functionality available to embedded platforms.
We use micro-ROS on our platform using FreeRTOS [1] as
the operating system. We test the system’s performance with
hardware-in-the-loop simulation, where the microcontroller
flies a 3DR Iris quadcopter simulated in Gazebo, and use
ROS 2 Foxy as the communication layer.

The FreeRTOS kernel (version 10.2.1) is modified to imple-
ment the sEDF-VD scheduling policy. To implement sEDF-
VD in FreeRTOS, we modify the existing round-robin ready
queue into a queue prioritized by absolute deadlines—denoted
as readyQueue. The deadline shrinkage factor x is applied
to HI-security tasks at the moment they are added to the
readyQueue.
Workloads. We modeled the flight control and communication
tasks as HI-security tasks, while the logging and dummy tasks
as LO-security tasks. The micro_ros_subscriber task
subscribes to two topics: IMU messages from the simulator,
and control inputs from the pilot. For the purpose of the case
study, the flight control inputs are kept constant, instructing the
quad to fly level while slowly ascending. An additional value
is sent along with the control inputs that can be manipulated
to cause a stack overflow. This value does not affect flight
performance, but its value controls the position of an array
write operation. The vulnerable task does not check the bounds
of the array write, so the extra control input can be used
to cause memory corruption. The dummy tasks run NOP
instructions to emulate additional workload. We present the
summary of the workloads used in the case study in Table III.
The flight controller is a PID controller that maintains level
flight by adjusting motor output to minimize angular velocity
on each axis. The workload is schedulable following sEDF-
VD with a shrinkage factor x = 0.5.
Attack Formation. To emulate the attack, the extra control
input is used to trigger a stack overflow. The extra control
input does not affect the flight behavior of the quad and is
intended to simulate an input vulnerable to attack. During
the experiment, a victim task writes to an array using the
control input as the index. Setting the control input to a high
value causes the task to write invalid data to the top of its
stack, activating FreeRTOS’s stack overflow detection. Since
the position of the sentinel value is known for each task, we
can reliably trigger the FreeRTOS stack overflow detector.
Runtime Defense. As a defense against a memory-corruption
attack, we use FreeRTOS’s built-in stack overflow detection
to serve as a basic runtime defense. The FreeRTOS stack
overflow detector has two modes available. The first checks
whether the pointer to the top of the stack has increased
beyond the end of the stack, and the second checks whether
a sentinel value at the end of the stack has been overwrit-
ten. Both checks happen at the scheduler’s interrupt tick,
which is runs at 1000hz by default, and whenever a task is
switched out. For evaluation, we use the second mode. When
a stack overflow is detected, FreeRTOS calls a user-defined

-25 -20 -15 -10 -5 0 5 10 15 20 25
Relative Time (ms)

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

τ10

Task execution before and after attack. (x=0.5)

Fig. 3: Events timeline for the task set in Table III scheduled
using sEDF-VD algorithm on FreeRTOS running micro-ROS.
Each box represents the execution of a job. The purple vertical
line indicates the arrival of the attacking message to the
highlighted victim task, τ2, and the red vertical line indicates
when the system detected the error. Task releases are denoted
with a blue upwards arrow, and task deadlines are denoted
with a red downwards arrow. Following the proposed approach
in Algorithm 1, the highlighted recovery task, τ10, is always
executed immediately after the mode switch and victim task τ2
re-executed by its original deadline.

vApplicationStackOverflowHook function.
We set the user-definable overflow handler to kill the

attacked task, change the mode into recovery mode, drop all
LO-security tasks, and set the deadline scaling factor to 1. It
also releases the recovery task. If the victim task was a HI-
security task, it restarts the task. During the mode switch, the
new scaling factor is applied by updating the relative deadline
values with the new scaling factor, finding the new absolute
deadlines for tasks in the ready queue, and re-sorting it.

To measure task execution, we use the
traceTASK_SWITCHED_IN and SWITCHED_OUT
trace hooks provided by FreeRTOS. FreeRTOS calls the
corresponding hook whenever the scheduler switches a task
in or out, passing the task as an argument to the callback,
allowing us to determine exactly when tasks are executed. We
record these events, along with task deadlines and releases,
into a circular buffer, which is sent over ROS 2 at the end of
the experiment.

B. Evaluation

We evaluate the usefulness of the proposed solution by
investigating the following research questions (RQs): RQ1:
Can this be run on a real system? RQ2: Can the schedulability
test be replicated on a real system? RQ3: What are the possible
implementation overheads?
Evaluating RQ1: Real World System Implementation. We
report the workloads for the case study of a quadcopter with
hardware-in-the-loop simulation in Table III. In the experiment
depicted by Fig. 3, the targeted task is τ2, where an attack



TABLE III: Description of workloads used in the case study
ID Name Description Parameters
τ1 m ros subscriber Receive & decode ROS 2 messages over serial T = 10ms,C = 507µs, ς = 1
τ2 calculate angles Process raw gyroscope and accelerometer observations, and

correct gyroscope drift
T = 10ms,C = 180µs, ς = 1

τ3 calculate errors Calculate desired state and error from control inputs T = 10ms,C = 64µs, ς = 1
τ4 pid controller Determine new control actions from the calculated errors T = 10ms,C = 64µs, ς = 1
τ5 esc publish Publish control actions to simulator via ROS 2 T = 18ms,C = 285µs, ς = 1
τ6,7 dummy task hi Dummy load T = 10ms,C = 500µs, ς = 1
τ8,9 dummy task lo Dummy load T = 10ms,C = 500µs, ς = 0
τ10 recovery task Stops LO-tasks and restarts the attacked task. After recovery, it

serves as a dummy task to simulate the recovery server budget.
T = 1000ms,C = 860µs

has occurred at 144465 ms (purple line) into the experiment.
Note that we used relative time in Fig. 3 mapping 144465 ms
to 0 ms for ease of the presentation. Once τ2 is switched
out by the scheduler, the stack overflow check occurs and
fails, triggering a mode switch. The mode switch also releases
the recovery task of τ10. τ8,9, both LO-security tasks, are
stopped and removed. The scaling factor is reset to 1.0, and
the scheduler re-sorts the ready queue to account for the
changed deadlines. τ2 is re-created and released immediately,
maintaining the target job’s original absolute deadline as the
new deadline. The effect of the scaling factor on deadlines of
the HI-security tasks is visible; the new deadlines are expanded
to ensure adequate time for recovery. This demonstrates the
feasibility of SR3 on real-world systems.

Evaluating RQ2: Schedulability Evaluation via randomly
generated task sets. We also generated tasksets to run on our
hardware implementation. Similar to the case study setting, we
generated tasksets with 12 tasks (n = 12), where half are LO-
security tasks and half are HI-security (P = 0.5). The recovery
task utilization uR is randomly selected from {0.1, 0.2, 0.3}.
The schedulability test results for these are shown in Fig. 4.
Similar to the evaluation of synthetic workload in Fig. 2,
sEDF-VD performs better than the baseline algorithms. We
randomly selected 100 tasksets that passed our proposed
schedulability test, and 100 that did not, and ran them on the
hardware implementation while recording task response times.
We show the response times of these tasks in Fig. 5.

Although both HI- and LO-security tasks are selected uni-
formly and with equal numbers in each task, we observed the
consistent response time differences between the HI- and LO-
security tasks. As shown in Fig. 5, regardless of the utilization
of the task set, the response time of HI-security tasks is higher
than the LO-security tasks, which is expected as the targeted
task needs to re-execute, and all HI-security tasks remain
active in recovery mode with recovery tasks. Besides, we also
observed that the tasks that passed the schedulability test never
missed the deadlines; however, we also observed that most of
the task sets that failed in the schedulability test also did not
miss any deadlines. We believe there are two potential reasons
for such a relatively low deadline missed ratio of the tasks that
failed to pass the schedulability test failed tasks: (1) it could be
the artifact of our schedulability as the test is sufficient only,
or (2) we ran the test on the board to a limited time horizon,
such that the worst-case scenario in our system implementation

0.6 0.7 0.8 0.9
Utilization [Normal Mode]

0.00

0.25

0.50

0.75

1.00

A
cc

ep
ta

n
ce

R
at

io

sEDF-VD (Ours)

EDF-VD [18]

EDF [8]

uR = 0.1

uR = 0.2

uR = 0.3

Fig. 4: Schedulability of tasksets tested on our system imple-
mentation.

never occurred.

Evaluating RQ3: Implementation Overhead Analysis.
There are four sources of overhead in our implementation:
detecting that an attack has occurred, killing LO-security tasks,
adjusting deadlines of tasks in the ready queue and re-sorting
it, and creating the recovery task. FreeRTOS performs its stack
overflow check in the timer tick interrupt, so the maximum
time taken to detect a stack overflow is governed by the
scheduler’s tick frequency. We set the scheduler to 1000 Hz,
so the maximum possible delay for overflow detection is 1 ms.
Note that the detection latency is dependent on the system’s
CFI implementation. In our tests, killing a task in FreeRTOS
takes 8 µs. The time to kill a task did not change with the
stack size, the task’s execution time, and the number of tasks
in the system. After adjusting the deadlines of tasks in the
readyQueue, the queue needs to be re-sorted. We use the
queue implementation provided by FreeRTOS, which stores
items in a linked list and uses insertion sort. Re-building the
list with 12 tasks took 27 µs in the worst case. In FreeRTOS,
tasks are created with a user-specified stack size. The time
required to create the recovery task scales with the allocated
stack size. Creating a recovery task with a stack size of 300
words (which we used when running tasksets) took 62 µs,
while creating a recovery task with a stack size of 1000 words
(which we used in the evaluation), took 172 µs. While running
tasksets from the schedulability tests, the worst-case latency
from overflow detection to attack recovery was 151 µs, and
during the evaluation, the maximum recovery time was 272 µs.

The overhead for the recovery steps depends heavily on the
implementation of the task scaling, recovery task, CFI method,



0.6 0.7 0.8 0.9
Utilization [Normal Mode]

0.00

0.25

0.50

0.75
R

es
p

on
se

T
im

e
/

D
ea

d
lin

e

LO-Critical

HI-Critical

Fig. 5: The response times of tasks from the generated tasksets
when ran on our system implementation.

and the OS being used. In our implementation, recovery time
scales with the stack size of started tasks and the number of
tasks on the systems. Additional overhead may occur if the
recovery task performs extra checks on the system to ensure
stability. The FreeRTOS stack corruption implementation used
in this evaluation checks a canary value at the top of the
running task’s stack during scheduler ticks, which adds a
minimal amount of overhead, but will not catch all attacks. A
more advanced CFI mechanism may add additional overhead.

VI. RELATED WORK

Real-time systems security gained significant attention from
the community a while ago. Son et al. [38] first analyzed
fixed-priority multi-level systems for a covert channel and
revealed potential threats on scheduler-based attacks. Since
then, researchers demonstrated different types of attacks [46],
[45], [21], [26], [16], [42] on a regular basis necessitating
the importance of secure real-time system designs. While
several works [10], [31], [32], [50], [28] developed attack pre-
vention/mitigation techniques through scheduler constraints.
These techniques, in general, cannot prevent memory-based
attacks. In contrast, SR3 aims to recover a system instrumented
with runtime defense from memory-based attacks.

Several existing papers developed attack detection methods
modifying or adding hardware [11], software [47], [51], [52],
[53], [54] to monitor the malicious activities. Besides, previous
work has studied co-scheduling security monitor tasks [22],
[23], [24], [25] with real-time tasks in fixed-priority partitioned
multi-core systems with or without allowing migration of
monitor tasks. These papers assume that the security tasks
monitor security events and potentially detect the attacks
(i.e., works as IDS). However, IDS does not stop attacks;
they merely attempt to detect malicious activity, while run-
time defenses (e.g., CFI [18], [47], [56], data flow integrity
(DFI) [12]) prevent attacks from succeeding by crashing the
process. Note that, unlike IDS, runtime defenses are integral to
the task itself, and are not independently scheduled. Therefore,
detection using runtime defenses is real-time and has no
scheduling overhead. In SR3, tasks are instrumented with a
runtime defense instead of IDS.

Fault tolerance systems typically adopt different redun-
dancy techniques, including the re-execution [6], [35] of the
faulty tasks. While prior fault-tolerant works have studied

re-execution for fault tolerance, there are several important
distinctions in SR3. Our recovery task models the need for
additional workload to respond and recover from a malicious
threat, whereas in fault tolerance, the fault is assumed benign
and simply restarted [17]. Furthermore, by dropping the work-
load in the system in SR3, we are reducing attack surfaces
to the system at large. Also, runtime defenses detect attacks
immediately, while detecting benign faults can be challenging
and delayed (see Table 1 of [43] for a comparison of fault
detection techniques). [5] is a work-in-progress of this paper.

VII. CONCLUSIONS

We have presented SR3—a secure and resilient real-time
recovery model, scheduler, and analysis. This model is built
upon the mixed-criticality scheduling framework, where ‘secu-
rity’ is the source of criticality instead of ‘safety’. Our model
is an example of a multi-mode mixed-criticality system, in
which there are two operating modes, normal and recovery,
and tasks are either low- or high-security criticality tasks.
Additionally, to facilitate recovery from a security event,
a recovery task executes during recovery mode. To avoid
pessimism when adapting existing MC analysis, we developed
a uniprocessor scheduling algorithm with the modified virtual
deadline for each HI-security task and provided a DBF-based
schedulability test. We implemented the proposed framework
on FreeRTOS and evaluated it through a case study of control
tasks. Finally, we experimentally show that SR3 performs
better than the existing uniprocessor scheduling schemes such
as EDF and EDF-VD for mixed-criticality systems upon model
transformation via simulation on synthetic workload.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant CMMI 2246672 and also by the
NASA Aeronautics Research Mission Directorate (ARMD)
University Leadership Initiative (ULI) under cooperative
agreement number 80NSSC24M0070. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Aeronautics and Space Administration.

REFERENCES

[1] Freertostm real-time operating system for microcontrollers. https://www.
freertos.org/. Accessed: 2022-04-07.

[2] micro-ros puts ros 2 onto microcontrollers. https://micro.ros.org/. Ac-
cessed: 2022-04-07.

[3] Ros 2 documentation. https://docs.ros.org/en/foxy/index.html. Accessed:
2022-04-07.

[4] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity.
In ACM Conference on Computer and Communications Security, 2005.

[5] A. Al Arafat, S. Vaidhun, B. C. Ward, and Z. Guo. A secure resilient
real-time recovery model, scheduler, and analysis. 9th Workshop on
Mixed Criticality Systems, 2022.

[6] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng. A four-mode model
for efficient fault-tolerant mixed-criticality systems. In 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016.

[7] M. Antonakakis, T. April, M. Bailey, M. Bernhard, et al. Understanding
the mirai botnet. In 26th USENIX Security Symposium (USENIX Security
17), pages 1093–1110. USENIX Association, Aug. 2017.



[8] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In 2012
24th Euromicro Conference on Real-Time Systems, 2012.

[9] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In [1990] Proceedings 11th Real-
Time Systems Symposium, pages 182–190, 1990.

[10] M. Bechtel and H. Yun. Denial-of-service attacks on shared cache
in multicore: Analysis and prevention. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019.

[11] N. Bellec, S. Rokicki, and I. Puaut. Attack detection through monitoring
of timing deviations in embedded real-time systems. In ECRTS 2020-
32nd Euromicro Conference on Real-Time Systems, pages 1–22, 2020.

[12] N. B. Bellec, G. Hiet, S. Rokicki, F. T. Tronel, and I. Puaut. RT-DFI:
Optimizing data-flow integrity for real-time systems. In ECRTS, 2022.

[13] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[14] A. Burns. Multi-model systems — an mcs by any other name. In 8th
International Workshop on Mixed Criticality Systems, 2020.

[15] N. Burow, R. Burrow, R. Khazan, H. Shrobe, and B. C. Ward. Moving
target defense considerations in real-time safety-and mission-critical
systems. In 7th ACM Workshop on Moving Target Defense, 2020.

[16] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash.
A novel side-channel in real-time schedulers. In 2019 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2019.

[17] N. Chen, S. Zhao, I. Gray, A. Burns, S. Ji, and W. Chang. Msrp-ft:
Reliable resource sharing on multiprocessor mixed-criticality systems. In
2022 IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 201–213. IEEE, 2022.

[18] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell. Holistic
Control-Flow protection on Real-Time embedded systems with kage. In
31st USENIX Security Symposium (USENIX Security 22), Boston, MA,
Aug. 2022. USENIX Association.

[19] P. Ekberg and W. Yi. Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems. Real-Time Syst., 50(1):48–86,
Jan. 2014.

[20] J. Fellmuth, T. Göthel, and S. Glesner. Instruction caches in static
WCET analysis of artificially diversified software. In 30th Euromicro
Conference on Real-Time Systems (ECRTS), 2018.

[21] X. Gong and N. Kiyavash. Quantifying the information leakage in timing
side channels in deterministic work-conserving schedulers. IEEE/ACM
Transactions on Networking, 24(3):1841–1852, 2015.

[22] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni. Exploring
opportunistic execution for integrating security into legacy hard real-
time systems. In 2016 IEEE Real-Time Systems Symposium (RTSS),
pages 123–134. IEEE, 2016.

[23] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba. Contego: An
adaptive framework for integrating security tasks in real-time systems.
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), 2017.

[24] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba. A design-space
exploration for allocating security tasks in multicore real-time systems.
In Design, Automation & Test in Europe Conference & Exhibition, 2018.

[25] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba. Period adaptation
for continuous security monitoring in multicore real-time systems. In
DATE. IEEE, 2020.

[26] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam. Mitigating
timing side channel in shared schedulers. IEEE/ACM Transactions on
Networking, 24(3):1562–1573, 2015.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. seL4:
Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS
22nd symposium on Operating Systems Principles, pages 207–220, 2009.

[28] K. Krüger, M. Volp, and G. Fohler. Vulnerability analysis and mitigation
of directed timing inference based attacks on time-triggered systems.
LIPIcs-Leibniz International Proceedings in Informatics, 106:22, 2018.

[29] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, Jan. 1973.

[30] J. S. Mertoguno, R. M. Craven, M. S. Mickelson, and D. P. Koller. A
physics-based strategy for cyber resilience of cps. In Autonomous Sys-
tems: Sensors, Processing, and Security for Vehicles and Infrastructure
2019. International Society for Optics and Photonics, 2019.

[31] S. Mohan, M. K. Yoon, R. Pellizzoni, and R. Bobba. Real-time
systems security through scheduler constraints. In 2014 26th Euromicro
Conference on Real-Time Systems, pages 129–140. IEEE, 2014.

[32] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba. Integrating
security constraints into fixed priority real-time schedulers. Real-Time
Systems, 52(5):644–674, 2016.

[33] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound:
Highly compatible and complete spatial memory safety for C. In ACM
Conference on Programming Language Design and Implementation,
PLDI, 2009.

[34] C. Project. Memory safety, 2020.
[35] F. Reghenzani, Z. Guo, L. Santinelli, and W. Fornaciari. A mixed-

criticality approach to fault tolerance: Integrating schedulability and
failure requirements. In 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2022.

[36] G. Serra, P. Fara, G. Cicero, F. Restuccia, and A. Biondi. PAC-PL:
Enabling control-flow integrity with pointer authentication in FPGA SoC
platforms. In RTAS ’22, 2022.

[37] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In 14th ACM Conference on
Computer and Communications Security, page 552–561, 2007.

[38] J. Son and Alves-Foss. Covert timing channel analysis of rate mono-
tonic real-time scheduling algorithm in mls systems. In 2006 IEEE
Information Assurance Workshop, pages 361–368. IEEE, 2006.

[39] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Real-Time Systems, 1(1):27–60, 1989.

[40] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory.
In 2013 IEEE Symposium on Security and Privacy. IEEE, 2013.

[41] G. Thomas. A proactive approach to more secure code, 2019.
[42] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla. Cache side-channel

attacks and time-predictability in high-performance critical real-time
systems. In 55th Annual Design Automation Conference, 2018.

[43] G. Upasani, X. Vera, and A. González. Avoiding core’s due & sdc via
acoustic wave detectors and tailored error containment and recovery.
ISCA, 2014.

[44] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), pages 239–243, 2007.

[45] M. Völp, B. Engel, C.-J. Hamann, and H. Härtig. On confidentiality-
preserving real-time locking protocols. In IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013.

[46] M. Völp, C.-J. Hamann, and H. Härtig. Avoiding timing channels in
fixed-priority schedulers. In Proceedings of the 2008 ACM symposium
on Information, computer and communications security, 2008.

[47] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C.
Ward. Control-flow integrity for real-time embedded systems. In 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[48] J. W. Wang, A. Li, H. Li, C. Lu, and N. Zhang. RT-TEE: Real-time
system availability for cyber-physical systems using ARM TrustZone.
In IEEE Symposium on Security and Privacy, 2022.

[49] B. C. Ward, R. Skowyra, C. Spensky, J. Martin, and H. Okhravi. The
leakage-resilience dilemma. In ESORICS 2019, page 87–106.

[50] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha. Taskshuffler: A schedule
randomization protocol for obfuscation against timing inference attacks
in real-time systems. In 2016 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), pages 1–12. IEEE, 2016.

[51] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha. Learning
execution contexts from system call distribution for anomaly detection
in smart embedded system. In Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation, 2017.

[52] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha. Securecore: A
multicore-based intrusion detection architecture for real-time embedded
systems. In 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 21–32. IEEE, 2013.

[53] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha. Memory heat map:
Anomaly detection in real-time embedded systems using memory be-
havior. In 52nd Design Automation Conference (DAC). IEEE, 2015.

[54] M. M. Z. Zadeh, M. Salem, N. Kumar, G. Cutulenco, and S. Fischmeis-
ter. Sipta: Signal processing for trace-based anomaly detection. In 2014
International Conference on Embedded Software. IEEE, 2014.

[55] F. Zhang and A. Burns. Schedulability analysis for real-time systems
with edf scheduling. IEEE Transactions on Computers, 58(9), 2009.

[56] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls. Silhouette:
Efficient protected shadow stacks for embedded systems. In 29th
USENIX Security Symposium, 2020.


