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Abstract—Real-time cardiovascular disease (CVD) detection on
wearable devices presents significant challenges due to the vary-
ing heart rate conditions and constrained computational capabil-
ities of embedded systems. Existing approaches often struggle to
balance diagnostic accuracy with the strict latency requirements
imposed by different heart rate scenarios. In this study, we
propose an Adaptive Model Selection (AMS) framework coupled
with an anytime Convolutional Neural Network that integrates
Residual Blocks, Squeeze-and-Excitation layers, and a Global
Attention mechanism. By dynamically adjusting the model’s
complexity based on real-time heart rate, our solution optimizes
diagnostic accuracy while ensuring a timely response. Evaluations
conducted with the PhysioNet Database on a Raspberry Pi 4
demonstrate that our model achieves an accuracy of 91.5% with
an average inference latency of only 1.33 ms per sample. These
outcomes illustrate the effectiveness and practical applicability
of our framework for robust, responsive, and accurate on-device
ECG monitoring in continuous cardiac care. Our code is available
online on GitHub1.

Index Terms—electrocardiography monitoring, real-time em-
bedded system, adaptive model selection, deep learning

I. INTRODUCTION

Cardiovascular diseases (CVDs) remain the leading cause of
mortality globally, accounting for approximately 17.9 million
deaths annually [21]. Sudden cardiac events can occur unpre-
dictably, even among individuals with no prior heart condition
diagnoses, highlighting the critical need for continuous cardiac
monitoring for the general population [5], [18]. Medical-
grade monitoring devices, although accurate, are typically
expensive, inconvenient for daily use, and thus not widely
adopted by the general public. Consequently, consumer-grade
wellness devices such as smartwatches and fitness trackers,
which integrate ECG monitoring functionalities, have gained
significant popularity for everyday health management.

Wearable ECG devices offer continuous, non-invasive car-
diac monitoring by leveraging cyber-physical system capabili-
ties and human-in-the-loop interactions, enabling personalized
health insights and timely interventions [22], [30]. However,
real-time ECG processing on these devices poses unique
challenges due to dynamically varying heart rates. Traditional
fixed-window ECG analysis methods [15], [16], although
commonly used, fail to accommodate variations in heart rate
effectively. When using a shifted window approach for data
segmentation, a higher heart rate implies more cardiac cycles

1https://github.com/yixinli19/AMS CVD

within a given fixed-size window, thereby requiring increased
computational effort. For instance, a single heartbeat cycle
necessitates only one inference, whereas three cycles demand
three separate computations. Such variability can lead to
missed deadlines and compromised responsiveness, especially
under higher heart rate conditions.

Furthermore, consumer wearable devices often handle mul-
tiple concurrent tasks, including user interface management,
wireless communication (e.g., Bluetooth, Wi-Fi), sensor fusion
processes, data encryption, and logging [6]. These concurrent
tasks further constrain computational resources, complicating
real-time ECG anomaly detection and necessitating adaptive
resource demand strategies based on heart rate variability.

To address this critical challenge, we propose an Adaptive
Model Selection (AMS) framework, complemented by an any-
time convolutional neural network. Our approach dynamically
selects model complexity based on real-time heart rate moni-
toring. Specifically, at higher heart rates, a lightweight model
ensures timely computation, while moderate and advanced
models provide deeper, more accurate analyses at lower heart
rates. By dynamically adjusting model complexity accord-
ing to instantaneous physiological conditions, our solution
effectively balances computational efficiency with diagnostic
accuracy, enhancing reliability and responsiveness in cardiac
monitoring applications.

Integrating advanced signal processing techniques, adap-
tive machine learning methodologies, and dynamic real-time
scheduling, our proposed framework significantly improves
the feasibility and accuracy of ECG monitoring on resource-
constrained wearable devices, promoting broader adoption for
continuous cardiac care.
Contributions. Our contributions are summarized as follows:

• Novel ECG Detection Model: An advanced convolu-
tional neural network architecture combining Residual
Blocks, Squeeze-and-Excitation (SE) layers, and Global
Attention mechanisms to enhance diagnostic accuracy.

• Adaptive Model Selection (AMS) Framework: A
dynamic selection strategy among three CNN vari-
ants—advanced, moderate, and lightweight—tailored to
real-time computational resource availability in wearable
devices.

• Unified Anytime Model: A single, parameter-shared
model architecture with early-exit points to adapt seam-

https://github.com/yixinli19/AMS_CVD


lessly to varying computational constraints, significantly
reducing memory usage on embedded platforms.

• Comprehensive Evaluation: Extensive experiments us-
ing the PhysioNet 2021 Challenge dataset on a Raspberry
Pi 4, benchmarking against state-of-the-art models, and
demonstrating superior accuracy and real-time respon-
siveness.

Paper Organization. We begin by outlining the research
problem in Section II. Section III details the real-time system
design, while Section IV further explains the schedulability
analysis of the real-time system. Section V elaborates the deep
learning model design on CVD detection. Section VI discusses
the adaptive model selection and anytime model. In addition,
Section VII presents the experiments and results, followed
by a discussion in Section VIII. Section IX reviews related
literature, and Section X concludes the study and suggests
directions for future works.

II. PROBLEM STATEMENT

Wearable ECG devices are critical for continuous, real-time
monitoring of cardiovascular health by capturing the heart’s
electrical signals. However, achieving accurate and timely
anomaly detection on these embedded devices is challenging
due to their constrained computational resources and inherent
variability in heart rate (HR).

Heart rate HR, defined as the number of heartbeats per
minute, significantly influences the computational load in ECG
analysis. As shown in Fig. 1, higher HR results in more
frequent ECG cycles within a fixed timeframe, increasing
computational demands as the comparatively larger number of
ECG segments (defined as a window with a fixed number of
ECG cycles) need to analyze than a HR yielding fewer cycles.

(A)

(B)

Fig. 1: A 3-second ECG recording. In Part A, the R-R interval
spans 5 large grid boxes (1.0 second), corresponding to a heart
rate of 60 beats per minute. In Part B, the R-R interval spans
2 large grid boxes (0.4 seconds), corresponding to a heart rate
of 150 beats per minute.

To effectively manage the variation of computational de-
mand of ECG signal analysis, the system dynamically selects
the appropriate anomaly detection model complexity based
solely on instantaneous heart rate. The selection of suitable
model complexity at runtime ensures that diagnostic accuracy
remains high while real-time processing deadlines, dictated
by heart rate, are consistently met. Thus, the core challenge

lies in developing an adaptive framework capable of selecting
the optimal anomaly detection model in real-time, considering
variability in HR as the primary influencing factor.

Our objective is to design an adaptive cardiovascular dis-
ease anomaly detection system that maximizes diagnostic
accuracy while meeting real-time constraints. During run-
time, to process ith ECG segment Ei, an optimal model
Mi ∈ {MAdv,MMod,MLW}, representing advanced, moderate,
and lightweight models, respectively, is selected to maximize
diagnostic accuracy meeting deadline constraints.

Formally, the optimization problem is defined as follows:

argmax
Mi

A(Mi) =
1

N

N∑
i=1

I
(
Mi(E

i) = yi
)

s.t. Tproc(Mi) ≤ D(HR),

Mi ∈ {MAdv, MMod, MLW}

(1)

where I(.) is an indicator function, and yi and Mi(E
i)

denote the ground-truth and model-predicted labels, respec-
tively. Here, the diagnostic accuracy A(Mi) measures the
proportion of correctly classified ECG samples out of the
total N samples. The constraint Tproc(Mi) ≤ D(HR) ensures
real-time responsiveness by adjusting the processing deadline
based on the instantaneous HR. The performance of Mi

depends on the complexity level of the model; for example, an
advanced model would yield better accuracy than a moderate
or lightweight model but would require more execution time.

By solving this optimization problem at each iteration, the
system adaptively selects the most suitable anomaly detection
model, effectively balancing high diagnostic accuracy and real-
time constraints amid changing heart rate conditions.

III. SYSTEM DESIGN

The proposed system processes single-lead ECG data in
real-time, ensuring accurate anomaly detection across varying
heart rates. The workflow, depicted in Fig. 2, includes the key
stages of the proposed method.

ECG data is continuously captured using a single-lead con-
figuration. To enable efficient real-time processing, a shifted
window method segments the ECG signal into overlapping,
fixed-duration windows. This method ensures continuous data
analysis with minimal latency.

Within each window, R-peak detection is performed using
Hamilton’s algorithm [10], accurately identifying individual
heartbeats. Precise detection of R-peaks facilitates extracting
heartbeat cycles, defined as intervals between consecutive R-
peaks (R-R intervals). Example segments containing varying
numbers of cardiac cycles are illustrated in Fig. 3.

Our system dynamically adapts to the number of cardiac
cycles within each fixed-duration window. If a window con-
tains more cycles due to a higher heart rate, the system
correspondingly performs more computational tasks, as each
detected cardiac cycle triggers an inference execution.

Following R-peak and cycle detection, the system dynami-
cally selects the most suitable model complexity based on the
current heart rate:
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Fig. 2: Workflow of the real-time ECG processing system, including data acquisition, shifted window segmentation, R-peak
detection, heart rate monitoring, adaptive model selection based on heart rate conditions, and user alerting for abnormal
detection.
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Fig. 3: Representative ECG signal segments with varying
numbers of cardiac cycles. Each subfigure shows a continuous
ECG waveform consisting of (a) one, (b) two, (c) three, and
(d) four cardiac cycles, respectively.

• High HR (HR ≥ 90): Employ a lightweight model to
rapidly handle multiple cycles within constrained dead-
lines.

• Moderate HR (70 ≤ HR < 90): Use a moderate-
complexity model for balanced performance.

• Low HR (HR < 70): Utilize a comprehensive model, tak-
ing advantage of additional processing time to maximize
diagnostic accuracy.

Once processed with the selected model, ECG data is
evaluated for anomalies. If cardiac activity is deemed normal,
monitoring continues seamlessly. If abnormalities are detected,
the system immediately alerts the user, ensuring timely med-
ical intervention and enhancing safety.

This adaptive and dynamic cycle-based approach effectively
addresses varying computational demands imposed by differ-

ent heart rates, balancing real-time constraints with diagnostic
accuracy, thereby providing robust ECG monitoring suitable
for resource-constrained wearable devices.

IV. SCHEDULABILITY ANALYSIS

We consider a set of recurrent workload Γ =
{E, τ1, τ2, . . . , τn} is scheduled on a uniprocessor system.
Here, E is an adaptive varying task that presents the ECG seg-
ment analyzed for anomaly detection. E can potentially have
infinite number of instance and ith instance of E is denoted
as Ei. Each ECG segment is denoted by (C(HR), D(HR), HR)
where, C(HR) is the worst-case execution time, D(HR) is
the relative deadline and also sampling period, i.e., consec-
utive samples are at least D(HR) unit apart, and HR is the
user’s heart rate during sampling instant of E. Both C(HR)
and D(HR) are the functions of HR. Fig. 4 illustrates the
relation between HR and D(HR). C(HR) includes worst-case
execution time to process E by anomaly detection model
M . For instance, Ei can be processed by MMod based on
instantaneous heart rate HR, but the Ei+1 can be processed
by MLW implying that Ci(HR) > Ci+1(HR). The remaining
tasks of Γ, {τ1, τ2, . . . , τn}, are sporadic tasks to model all
other processes in the system, where each task τi is modeled
as (Ci, Ti). Here, Ci is the worst-case execution time, and Ti

is the period (also the relative deadline of the task). Each of
these tasks can also potentially release infinite instances with
a minimum inter-arrival time of Ti.

The tasks in the system are scheduled preemptively using
the Earliest Deadline First (EDF) scheduling algorithm. Under
(work-conserving) EDF scheduling, the task instance with the
earliest absolute deadline among all eligible tasks is always
selected for execution on the uniprocessor.

The schedulability of a task set with relative deadlines equal
to periods, scheduled under EDF on a uniprocessor, can be
effectively analyzed using the Liu and Layland schedulability
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Fig. 4: Relationship between heart rate (HR) and relative
deadline of corresponding ECG task D(HR).

test [17]. According to this test, a task set is schedulable if
the total utilization of all tasks is less or equal to 1, where
utilization is defined as the ratio between a task’s worst-
case execution time and its period. Any regular task τi has
a constant utilization U(τi) = Ci

Ti
, but the utilization of E

depends on the heart rate and varies for different instances:
U(Ei) = Ci(HR)

Di(HR) . Therefore, the task set would be schedula-
ble if, ∑

∀i

U(τi) + max
i

U(Eit) ≤ 1

∑
∀i

Ci

Ti
+max

i

Ci(HR)

Di(HR)
≤ 1

(2)

Note, although maxi U(Ei) find the maximum utilization
of ECG task for any sampling instance, both Ci(HR) and
Di(HR) have only a limited number of options based on the
HR threshold proposed in the paper. Therefore, maxi U(Ei)
can be computed efficiently.

V. DESIGN OF CVD DETECTION MODEL

This section introduces the design of our CVD detection
model, which combines ECG signal features and heart rate
patterns to make accurate predictions. The model is built for
real-time use, with a focus on both performance and efficiency.

A. Model Workflow

Figure 5 summarises the end-to-end signal flow. Throughout
the diagram, α is the target sequence length after adaptive
pooling, β is the number of heartbeats in the window, and γ
is the number of diagnostic classes.
Input preparation. Each segment contains β consecutive R–R
cycles, every cycle resampled to 256 samples, yielding an
ECG tensor of length 256 β. A companion vector of the
same cardinality (β) stores the inter-beat periods, capturing
heart-rate variability.
ECG branch. A stem convolution with 8 β channels extracts
low-level morphology; the signal is then processed by three
Residual Blocks whose channel widths increase to 16 β, 32 β,
and 64 β. Within each block, a squeeze-and-excitation (SE)
unit re-weights channels according to their global importance.
An adaptive average-pool then compresses the temporal di-
mension to α, producing a feature map of size α× 64 β.

Period branch. The period vector passes through a
fully-connected (FC) block, Linear→ BatchNorm→ ELU,
expanding its representation to 64 β features. This transfor-
mation places temporal information in the same feature space
as the pooled ECG map.
Global attention fusion. Flattened ECG features

(
64 βα

)
are concatenated with the period embedding

(
64 β

)
and

fed to a two-layer attention module. The resulting sigmoid
mask modulates the ECG features, enabling the network to
emphasise cycle regions whose relevance is corroborated by
the instantaneous rhythm context.
Classification head. The attended ECG vector and the period
embedding are re-concatenated and passed through an output
block consisting of two FC layers; the final linear layer
produces γ logits.

This architecture couples strong morphological feature
learning (convolution + residual + SE) with rhythm-aware
re-weighting (period branch + global attention) while main-
taining a compact, throughput-oriented design suitable for
real-time embedded inference.

B. Residual Blocks with Squeeze-and-Excitation Layers

A fundamental advancement in our model is the incorpo-
ration of SE layers within Residual Blocks, which enhances
feature recalibration. This allows the network to emphasize
informative features while suppressing less relevant ones.
Mathematically, each Residual Block with an SE layer can
be described as:

y = F(x, {Wi})⊗ s+ x, (3)

where:
• x is the input feature map,
• F(x, {Wi}) represents the residual function composed

of convolutional operations,
• Wi denotes the learnable parameters,
• s ∈ RC is the scaling vector obtained through the SE

layer.
The scaling vector s ∈ RC is computed as:

s = σ (W2 · δ (W1 · AvgPool(x))) , (4)

where:
• AvgPool(x) performs global average pooling,
• δ represents the ReLU activation function,
• σ is the sigmoid activation function,
• W1 and W2 are the weight matrices for the SE layers.
The element-wise multiplication ⊗ applies the recalibrated

weights to the residual output, enhancing the network’s ability
to focus on salient features while mitigating the vanishing
gradient problem inherent in deep architectures.

C. Global Attention Mechanism

Building upon the feature extraction capabilities, the Global
Attention mechanism is a pivotal advancement that effectively
integrates ECG features with period features to enhance the
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Fig. 5: The proposed model architecture illustrating the integration of Residual Blocks with SE layers, the Global Attention
mechanism, and the Output Layer consisting of three fully connected layers for anomaly detection.

model’s discriminative capability. This mechanism operates
by computing attention weights that dynamically emphasize
critical regions of the ECG signal based on both intrinsic
ECG characteristics and temporal context provided by period
features.

Formally, let fECG ∈ RdECG denote the flattened ECG feature
vector and fperiod ∈ Rdperiod represent the period feature vector.
The combined feature vector is defined as:

fcombined =

[
fECG
fperiod

]
∈ RdECG+dperiod . (5)

The attention weights a ∈ RdECG are computed through a
two-layer fully connected network:

h = ELU(W1fcombined + b1), (6)
a = σ(W2h+ b2), (7)

where:
• W1 ∈ Rm×(dECG+dperiod),
• W2 ∈ RdECG×m,
• m is the dimensionality of the intermediate layer,
• b1 and b2 are the bias vectors,
• σ is the sigmoid activation function.
The computed attention weights are then applied to the

ECG feature map FECG ∈ RdECG×T (where T represents the
temporal dimension):

Fattended = a⊗ FECG, (8)

where ⊗ denotes element-wise multiplication. This operation
effectively highlights regions of the ECG signal that are most
indicative of potential anomalies, guided by both the ECG data
and the period context.

VI. AMS FRAMEWORK AND ANYTIME MODEL

This section describes how our run-time (1) selects an
appropriate network depth on a beat-to-beat basis and (2)
realises those depths inside a single parameter-shared CNN.

A. Adaptive Model Selection Framework

Shown in Algorithm 1, the AMS controller maintains a
pool of three pre-trained networks—LIGHTWEIGHT, MOD-
ERATE, and ADVANCED—whose inference latencies form a
strict hierarchy. At every shifted-window arrival, it reads the
instantaneous heart rate (HR), compares it with two fixed
thresholds, and chooses the shallowest model that can meet
the beat deadline.

• Model Pool: three CNN variants with increasing accu-
racy–latency trade-offs.

• Selection Rule: High HR (HR ≥ 90 bpm) →
LIGHTWEIGHT; Moderate HR (70≤ HR < 90)→ MOD-
ERATE; Low HR (HR<70)→ADVANCED.

Algorithm 1: Adaptive Model Selection (AMS)

Input: ECG segment Ei, instantaneous HR HR
Output: Prediction ŷi

1 if HR ≥ 90 then
2 Model ← LIGHTWEIGHT
3 else if 70 ≤ HR < 90 then
4 Model ← MODERATE
5 else
6 Model ← ADVANCED
7 end
8 ŷi ← Model(Ei);
9 if InferenceTime(Model)> D(HR) then

10 re-run on shallower model or flag timing anomaly
11 end
12 return ŷi

The two thresholds, 70 bpm and 90 bpm, correspond
to the 33rd and 66th percentiles of the training distribution
and can be re-tuned to trade precision for latency on other
devices or patient cohorts. To prevent thrashing when the
instantaneous HR drifts around a boundary, we smooth the
measurement with a fixed-duration, peak-anchored window:
after each window of length Tw closes, the next begins at



the last R-peak observed and again spans Tw s, so isolated
ectopic beats or missed detections have minimal impact on
the averaged rate. In deployment, a microsecond-resolution
watchdog can be enabled to pre-empt inference once elapsed
time crosses a configurable fraction kD(HR) of the beat budget
(e.g., k = 0.8); the segment is then re-evaluated on the next
shallower model, and the strict latency hierarchy ensures the
fallback still meets D(HR). Because AMS performs only two
threshold checks and an infrequent watchdog test, its run-time
overhead is negligible.

B. Anytime Model with Parameter Sharing

Storing three independent checkpoints would exhaust the
memory budget of a smartwatch. Instead, we implement
the three complexity levels as early-exit heads of a single
Anytime CNN. A shared backbone of convolutional and resid-
ual–attention layers feeds:

• an early exit that returns a prediction after a
global-average pool (high-HR windows),

• an intermediate exit that adds one residual+SE block
(moderate HR),

• a deep exit that adds two further residual+SE blocks plus
global attention (low HR).

Thus, shown in Algorithm 2, deeper predictions refine
shallower ones without reloading weights; switching depth
merely truncates the computation graph.

Algorithm 2: Anytime CNN Inference

Input: ECG segment Ei, instantaneous HR HR
Output: Prediction ŷi

1 features ← Backbone(Ei);
2 if HR ≥ 90 then
3 ŷi ← Lightweight Head(features)
4 else if 70 ≤ HR < 90 then
5 features ← Moderate Block(features);
6 ŷi ← Moderate Head(features)
7 else
8 features ← Advanced Block(features);
9 ŷi ← Advanced Head(features)

10 end
11 return ŷi

The network is trained with deep supervision; losses from
the three exits are summed with equal weights so that each
head remains independently accurate. At inference, AMS
first chooses the required depth (Algorithm 1); the Any-
time CNN then evaluates only up to that exit, saving both
memory transfers and latency while maintaining a single
compact checkpoint. This combination delivers the appropriate
latency–accuracy point for every heart-rate window without
incurring context-switch overhead.

VII. EXPERIMENTS AND RESULTS

To evaluate our model’s real-world effectiveness, we con-
ducted a series of experiments focused on both classification

performance and real-time feasibility. Using a large-scale ECG
dataset and simulating deployment on embedded hardware, we
tested how well our models detect cardiac anomalies under
various heart rate conditions and resource constraints.

A. Dataset

We employ the PhysioNet 2021 Challenge Database2 [25]
as our primary data source. This comprehensive collection
contains over 100,000 annotated ECG recordings from diverse
clinical environments spanning four countries across three
continents. Although the database includes multiple leads and
covers 133 different disease categories, real-world wellness
devices commonly capture only a single lead (often Lead I).
Accordingly, we filtered the database to retain only those 72
disease classes that can reliably manifest in Lead I data.

Rather than classifying individual diseases directly, we
assign each recording a seriousness score ranging from 0 to
4. Here, 0 indicates normal or minimally severe conditions,
while 4 denotes the most critical or severe abnormalities.
This condensed labeling scheme reflects practical realities in
wellness devices: given unavoidable sensor limitations (e.g.,
single-lead availability, potential motion artifacts, and subopti-
mal signal quality), distinguishing among 72 specific diseases
is less feasible in daily life scenarios. Instead, using a 0–4
severity scale allows the system to deliver timely alerts to the
user and provide a general gauge of their heart health, aligning
more closely with everyday monitoring use cases.

To ensure beat-level evaluation precision, we refined the
dataset by selecting only the recordings with a single dis-
ease label, resulting in a dataset of 22,359 single-label ECG
recordings ranging from 5 to 1800 seconds in length. By
excluding multi-label recordings, we eliminate ambiguity in
anomaly detection, enabling more accurate model training and
evaluation at the individual beat level.

TABLE I: Class Distribution

Label Training Set Validation Set Test Set

Label 0 145,866 36,467 45,583
Label 1 107,908 26,977 33,722
Label 2 42,760 10,690 13,363
Label 3 43,882 10,971 13,713
Label 4 10,106 2,526 3,158

Shown in Table I, we split the dataset into 80% training and
20% testing, and further split the training portion (80%) into
80% for actual training (64% of the original data) and 20%
for validation (16% of the original data). This results in a final
distribution of 64% for training, 16% for validation, and 20%
for testing across all labels.

The overall label distribution percentages are consistent
across these splits, maintaining the original class imbalance.
Label 0 comprises approximately 33% of the entire dataset,
while Label 1 makes up about 24.6%. Labels 2 and 3 account
for around 9.8% and 10%, respectively. Label 4, the least
represented class, makes up only about 2.3% of the dataset.

2Dataset: https://physionet.org/content/challenge-2021/1.0.3/#files

https://physionet.org/content/challenge-2021/1.0.3/#files


This imbalance mirrors real-world scenarios, where data for
highly severe diseases is limited.

B. Experimental Setup

To train the proposed models, we utilize an NVIDIA
GeForce RTX 3080 GPU for efficient batch processing and hy-
perparameter tuning. Once trained, we deploy these models on
a Raspberry Pi 4 to evaluate real-time performance under con-
strained computational resources. The Raspberry Pi 4, which
features a quad-core ARM Cortex-A72 processor, serves as an
effective stand-in for commercial wearable devices (e.g., the
Samsung Galaxy Watch 6 powered by dual-core ARM Cortex-
A55 [24], [27]). This hardware similarity makes it a suitable
testbed for verifying that the trained models adhere to stringent
real-time requirements common in wearable health-monitoring
scenarios.

We prepare the ECG data through a series of preprocessing
steps to ensure consistency and improve signal quality. First,
R-peaks are automatically detected using Hamilton’s algorithm
from the BioSPPY library [3], enabling segmentation of the
continuous ECG waveforms into individual heartbeat cycles.
Each cycle is then resampled to a fixed length of 256 data
points to provide uniform input dimensions for the model.
Finally, each preprocessed cycle is labeled according to its
severity score (0–4), yielding a training-ready dataset aligned
with our classification objective. These steps collectively en-
sure that the model receives clean, standardized ECG inputs,
thereby facilitating more reliable model training and evaluation
under embedded system constraints.

C. Experiments

We designed our experiments to evaluate two primary
aspects: (1) the effectiveness of our proposed model architec-
tures in accurately detecting cardiac anomalies under different
temporal contexts, and (2) their computational efficiency in
resource-constrained scenarios.

1) Model Performance Evaluation: We compare three
model variants to investigate how architectural components
impact diagnostic accuracy and runtime performance:

• Advanced Model: Combines Residual Blocks, SE layers,
and a Global Attention mechanism for maximal feature
extraction.

• Moderate Model: Omits the Global Attention mechanism
while retaining Residual and SE layers to measure the
attention mechanism’s added value.

• Lightweight Model: Excludes both the attention mecha-
nism and SE layers, significantly reducing the parameter
count to favor faster inference.

Each model was trained independently using the same
dataset and label structure. We used the Adam optimizer
(learning rate 0.001, batch size 128) and early stopping based
on validation loss. No sequential or fine-tuning strategy was
applied across models to avoid bias. For the unified anytime
model, all exit branches were jointly trained using multi-exit
supervision, ensuring valid predictions at different depths for
real-time adaptation.

To explore the influence of temporal context, each model
is tested on 1, 2, 3, and 4 cardiac cycles. This variation
allows us to see whether processing additional heartbeats
yields substantive gains in accuracy or proves too costly in
time. In addition, we benchmarked against several baselines:

1) A Deep Neural Network (DNN) architecture [19].
2) An Attention-based CNN-LSTM model [15], [29].
3) A CNN-Transformer Hybrid, integrating convolutional

filters with Transformer layers [4], [20].
4) A Temporal Convolutional Network (TCN) [13].
In each case, we measure standard classification metrics

(e.g., accuracy, F1-score) alongside runtime indicators (e.g.,
per-inference latency) on the embedded platform. This ap-
proach captures both the quality of the predictions and the
practicality of deploying these architectures in real-world,
multitasking wearable environments.

2) Real-Time System Implementation: To assess the respon-
siveness of each model variant across varying heart rate condi-
tions, we constructed a real-time ECG processing pipeline. In
this pipeline, the device continuously monitors incoming ECG
data along with the current HR, attempting to complete each
inference within predefined time thresholds. By comparing
actual inference durations against these deadlines, we can
evaluate the real-time viability of the models under different
heart rate scenarios.

Table II outlines the dataset size and processing time thresh-
olds corresponding to distinct heart rate conditions. Although
initially informed by typical physiological observations, these
thresholds are defined to reflect maximum allowable laten-
cies necessary for preserving real-time responsiveness. For
instance, the threshold of 1.5 ms under the High HR scenario
indicates that any inference taking longer could impede critical
real-time functions (such as user-interface updates or sensor
fusion processes), compromising system performance.

TABLE II: Settings for Different Heart Rate Conditions

Setting HR (beats/minute) Sample Size Threshold (ms)

High HR ≥ 90 348,227 1.5
Mid 70 ≤ HR < 90 336,238 1.75
Low HR < 70 336,051 2

Practically, these thresholds may be adjusted based on
specific application contexts or tighter performance criteria.
For example, during periods of increased physiological stress
or simultaneous critical tasks, real-time thresholds might be
tightened to prioritize rapid response. Conversely, under lower
heart rate conditions or reduced concurrent task demands, the
thresholds can be relaxed, allowing for more comprehensive
ECG anomaly analyses. This framework enables thorough
evaluation of each model’s scalability regarding inference
speed and accuracy across varying heart rate conditions.

3) Evaluation Metrics: The performance of the disease
detection models was evaluated using the following metrics:

• Cycles: Number of ECG cycles used as input.
• Accuracy (ACC): Proportion of correctly classified in-

stances.



• Precision (PREC): Fraction of true positives among pre-
dicted positives.

• Recall (REC): Proportion of true positives correctly iden-
tified among all actual positives.

• F1-Score (F1): Harmonic mean of precision and recall,
providing a balanced measure of model performance.

• Model Size (MB): Storage requirements, indicating fea-
sibility for deployment on resource-constrained devices.

• Inference Time (ms): Average execution time per infer-
ence on a Raspberry Pi 4.

• Deadline Misses (DDL Miss): Number of missed dead-
lines out of 1,000 data samples.

D. Experimental Results
Table III presents the performance metrics of various models

across different numbers of ECG cycles. In addition, Figure 6
shows the detailed performance for our proposed AMS model.
The key findings from the results are as follows:

The Advanced model achieved the highest accuracy of
92.6% with two ECG cycles, indicating its strong ability to
learn from additional data. However, its increased model size
and inference time at higher cycle counts may limit its suitabil-
ity for real-time applications on resource-constrained devices.
The Lightweight model demonstrated commendable perfor-
mance with minimal computational requirements, achieving
86.5% accuracy at two cycles. Its small model size and fastest
inference times make it well-suited for embedded systems with
limited resources. The AMS model offered the best balance
between accuracy and efficiency, reaching 91.5% accuracy
with two cycles while maintaining low inference times and
zero deadline misses, making it ideal for real-time ECG
analysis where both promptness and precision are critical.

In contrast, the DNN model exhibited low accuracy despite
its computational efficiency, limiting its reliability for practical
ECG classification tasks. The CNN-LSTM model, although
delivering higher accuracy, suffered from prolonged inference
times and frequent deadline misses, rendering it unsuitable for
real-time applications. Similarly, the Transformer-based model
demonstrated suboptimal accuracy combined with significant
computational overhead, making it impractical for deployment
in resource-constrained settings. Finally, the TCN model,
while showing better performance among the baselines, still
lagged behind our proposed models in terms of both accuracy
and real-time responsiveness.

Overall, the results suggest that the AMS and Lightweight
models are the most promising for real-time cardiovascular
disease detection in embedded systems, offering an optimal
trade-off between accuracy and computational efficiency.

VIII. DISCUSSION

In this section, we reflect on the model’s performance
trends, explore its practical deployment in real-time wearable
systems, and outline key limitations and future directions.

A. Performance Insights
Table III clarifies three intertwining trends—context benefit,

computational cost, and deadline pressure—that jointly shape

real-time feasibility. First, adding a second cardiac cycle
markedly improves every architecture (e.g., ADVANCED rises
from 87.3% to 92.6% accuracy and LIGHTWEIGHT from
82.4% to 86.5%), confirming that one extra beat supplies
enough temporal context for the network to stabilise mor-
phological variability. A third and fourth cycle, however,
yield diminishing or negative returns: accuracy falls back
to 88.1% and 86.5% for ADVANCED while latency more
than quadruples (1.02 ms → 8.49 ms). This plateau indicates
that longer segments start to blur transient abnormalities and
simultaneously push the model into the non-real-time regime.

Second, inference time grows almost linearly with input
length (slope ≈ 1.4–1.9ms per additional cycle for AD-
VANCED), whereas memory footprint grows super-linearly
because deeper layers activate more channels. For instance,
ADVANCED at four cycles occupies 44.6 MB—over 200× the
LIGHTWEIGHT model at one cycle—exceeding the cache bud-
get of most embedded SoCs. These costs translate directly into
deadline misses: once latency exceeds the 1.5–2 ms envelopes
in Table II, 100% of the inferences over-run.

Third, the AMS+ANYTIME configuration exploits both
observations. By supervising all exit heads jointly, it inherits
the two-cycle accuracy sweet-spot (91.5%) while shaving 31%
latency and 34% memory compared with the stand-alone AD-
VANCED model. Crucially, zero deadline misses are retained
across all heart-rate regimes because AMS dispatches the
early-exit path when the instantaneous HR shortens the dead-
line. In high-HR windows, the framework therefore behaves
like the LIGHTWEIGHT network (0.57 ms), whereas in low-HR
windows it escalates to the deeper path without incurring a
context switch.

The baselines reinforce these dynamics. CNN-LSTM
achieves 87.3% accuracy at two cycles yet needs 3.33 ms
and misses every deadline; Transformers are both slower and
less accurate; TCNs narrowly trail the proposed models but
still violate timing once three cycles are processed. Overall,
the results demonstrate that (i) two-cycle context is optimal
on our dataset, (ii) architectural refinement—SE layers plus
global attention—drives accuracy gains, and (iii) adaptive
depth selection is indispensable for meeting millisecond-level
timing constraints on embedded platforms.

B. Practical Deployment and Clinical Impact

Resource-constrained wearables must juggle power, ther-
mal, and multitasking limits while still delivering reliable
cardiac insights. Our framework satisfies these competing
demands by dynamically scaling model depth: under heavy
system load or elevated heart-rate deadlines, it executes the
lightweight path, preserving headroom for user-interface, ra-
dio, and sensor-fusion tasks; in calmer periods, it escalates
to the moderate or advanced path for finer-grained analysis.
Because all paths share a common backbone in the Anytime
Model, switching incurs no weight reload and only marginal
SRAM overhead, keeping the total footprint below 5 MB in
the two-cycle AMS configuration. This combination—adaptive
model selection plus parameter sharing—enables continuous,



TABLE III: Performance Metrics of Model Variants Across Different ECG Cycles

Model Cycles ACC (%) PREC (%) REC (%) F1 (%) Size (MB) Inference (ms) DDL Miss

DNN [19]

1 55.7 56.1 55.4 54.8 0.11 0.05 0
2 60.9 60.7 60.8 60.6 0.29 0.12 0
3 58.6 57.2 56.1 57.2 0.58 1.30 13
4 57.4 56.3 56.0 58.8 1.42 3.41 1000

CNN-LSTM [15], [29]

1 81.1 80.2 81.1 81.3 3.25 2.67 1000
2 87.3 87.7 87.2 87.6 5.56 3.33 1000
3 83.7 83.2 83.5 84.1 12.18 5.29 1000
4 80.4 79.5 80.0 79.8 27.51 16.13 1000

Transformer [4], [20]

1 65.2 64.8 65.0 64.9 10.52 4.31 1000
2 70.1 69.8 69.5 69.7 18.73 7.62 1000
3 67.8 67.2 67.5 67.3 32.84 13.91 1000
4 65.9 65.5 65.2 65.4 58.21 25.43 1000

TCN [13]

1 84.5 84.2 84.6 84.4 5.21 1.34 52
2 86.1 86.0 86.2 86.1 7.93 2.18 979
3 85.4 85.1 85.3 85.2 14.29 4.76 1000
4 84.8 84.5 84.7 84.6 25.63 9.32 1000

Advanced

1 87.3 87.1 87.1 87.0 2.1 1.02 0
2 92.6 91.8 92.5 91.1 6.22 1.94 431
3 88.1 87.7 88.4 88.0 19.5 4.30 1000
4 86.5 86.0 86.8 86.4 44.6 8.49 1000

Moderate

1 85.1 85.7 85.4 85.0 0.49 0.68 0
2 87.8 88.5 88.0 87.7 2.09 1.79 259
3 86.5 86.2 86.8 86.5 5.7 3.94 1000
4 84.0 84.7 84.3 84.7 12.8 7.31 1000

Lightweight

1 82.4 82.8 83.5 83.1 0.18 0.39 0
2 86.5 87.2 86.0 86.6 0.44 1.05 0
3 84.7 83.9 84.5 83.2 1.8 2.62 1000
4 82.8 82.5 82.0 82.8 4.3 5.22 1000

AMS+Anytime

1 86.6 86.2 86.4 86.8 1.1 0.57 0
2 91.5 90.7 91.0 90.6 4.12 1.33 0
3 87.2 87.9 86.5 87.2 11.6 3.13 1000
4 85.4 85.5 85.0 85.8 33.9 6.96 1000

on-wrist inference without violating the millisecond-level bud-
gets listed in Table II.

Clinically, such adaptability broadens the utility of
single-lead devices across daily activities. During rest or sleep,
longer R–R intervals give the system time to run the advanced
branch, boosting sensitivity to subtle bradyarrhythmias; during
vigorous exercise, it seamlessly falls back to the lightweight
branch, maintaining real-time alerts despite faster rhythms
and higher motion noise. Providers can therefore prescribe
the same wearable for post-event monitoring, rehabilitation,
or preventive fitness, confident that severity-graded alarms
remain consistent. For consumers, a single device now covers
sleep tracking, workout feedback, and routine health checks
without manual mode switching, encouraging sustained en-
gagement. Remaining deployment challenges—user educa-
tion, alarm-fatigue mitigation, and EHR integration—can be
addressed at the application layer, building on the robust,
adaptive inference core demonstrated here.

C. Limitations and Future Directions

Despite its considerable promise, our framework faces sev-
eral constraints that merit further exploration. First, while our
dataset and experiments introduced controlled noise to mimic
real-world conditions, practical deployments may experience

more severe artifacts caused by sensor misplacement, motion
disturbances, or environmental interference. Addressing these
issues might require advanced denoising algorithms or domain
adaptation techniques that enhance model robustness without
overburdening the embedded hardware.

Another limitation concerns the reliance on labeled training
data. Large, meticulously annotated ECG datasets can be
difficult to assemble, particularly for rare cardiac conditions.
Semi-supervised or self-supervised learning paradigms could
alleviate this data bottleneck by harnessing unlabeled physio-
logical signals to learn robust feature representations. More-
over, although the Raspberry Pi 4 offers a reasonable analog
to commercial wearable platforms, a wide range of hardware
and firmware variations exist across manufacturers. Testing
our framework on these different platforms would confirm its
broader applicability and uncover potential optimizations tied
to specific architectures or system constraints.

An additional avenue for improvement lies in refining
the classification scheme itself. Currently, we assign uniform
importance to all severity levels of cardiac anomalies during
training. However, in real-world scenarios, it may be far more
critical to avoid misclassifying severe abnormalities as normal
than to occasionally misclassify a normal reading as abnormal.
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Fig. 6: Visualization of Accuracy and Inference Trends, and Confusion Matrix for Advanced Model with Two Cycles.

Future work could incorporate asymmetric cost functions or
class-weighting strategies to prioritize higher-severity con-
ditions, ensuring that rare yet critical heart anomalies are
accurately captured.

IX. RELATED WORK

Single-Lead ECG Processing in Wearable Devices: Single-
lead ECG devices have gained prominence due to their com-
pactness and ease of integration into wearable systems. Studies
have demonstrated that single-lead ECG can reliably detect
various cardiac abnormalities, including arrhythmias [8]. The
simplicity of single-lead systems makes them ideal for contin-
uous monitoring in consumer-grade wearables [26]. However,
the potential decrease in diagnostic accuracy necessitates ad-
vanced signal processing and machine learning techniques to
compensate for the limited data [31].
Real-Time ECG Anomaly Detection: Real-time anomaly
detection in ECG signals is critical for timely intervention.
Traditional methods rely on threshold-based algorithms, which
may not generalize well across diverse populations and noisy
environments [7]. Recent advances leverage machine learning,
particularly deep learning models, to enhance accuracy and
robustness [23]. Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) have been employed to
automatically extract complex features from raw ECG data,
enabling precise identification of irregular heartbeats [1].
Dynamic Model Scaling for Resource-Constrained Devices:
Dynamic model scaling adjusts the complexity of machine
learning models based on processing requirements and avail-
able computational resources, beneficial for wearable devices
under power and performance constraints [2]. Techniques like
model pruning and quantization enable real-time performance
without compromising accuracy [11]. By dynamically select-
ing architectures that balance speed and accuracy, wearable
ECG systems maintain continuous monitoring capabilities
under varying conditions.
Deep Learning Architectures for ECG Anomaly Detec-
tion: Deep learning architectures have revolutionized ECG
anomaly detection by providing end-to-end solutions that learn
hierarchical features from raw signals. CNNs capture local
temporal patterns, while RNNs and Long Short-Term Memory

(LSTM) networks model sequential dependencies [12]. Hybrid
architectures combining CNNs with attention mechanisms
enhance feature extraction and focus on critical ECG seg-
ments [14]. These advanced models achieve high accuracy
in classifying cardiac conditions like atrial fibrillation and
ventricular tachycardia [28].
Integration of Adaptive Techniques in ECG Monitoring
Systems: The integration of adaptive techniques such as
shifted window approaches and dynamic model scaling within
ECG monitoring systems represents a novel advancement.
While studies have explored these techniques individually,
their combined application for real-time, single-lead ECG
analysis remains under-explored [9]. Our proposed system
builds upon these foundations by implementing an adaptive
shifted window mechanism coupled with dynamic model se-
lection based on heart rate variability. This integration ensures
efficient resource utilization and maintains high diagnostic
performance, addressing critical challenges in real-time ECG
monitoring on wearable devices.

X. CONCLUSION AND FUTURE WORK

In this work, we presented an anytime, heart-rate–aware
ECG-analysis framework that unifies lightweight, moderate,
and advanced exits inside a single parameter-shared CNN
and schedules the shallowest path that can satisfy each beat’s
timing budget, achieving high diagnostic accuracy while re-
specting real-time constraints on an embedded prototype.
Going forward we will (i) reinterpret those timing budgets in
collaboration with clinicians to align latency targets with true
intervention windows, (ii) validate the system on wrist-worn
prototypes using live, noise-prone ECG streams rather than an
offline PhysioNet dataset, (iii) profile energy on an MCU-class
SoC to confirm battery feasibility, (iv) replace the fixed 70/90
bpm thresholds with personalised or learned switching logic,
(v) harden the pipeline against motion artefacts via denoising
and adversarial augmentation, (vi) restore diagnostic granu-
larity by tackling class imbalance with hierarchical or focal
training instead of collapsing 72 labels into five, and (vii) ex-
tend the schedulability analysis to include context-switch and
interrupt overheads so that deadline guarantees hold on a
wearable device with real-time operating system.
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